46 research outputs found
Large Deviations Analysis for Distributed Algorithms in an Ergodic Markovian Environment
We provide a large deviations analysis of deadlock phenomena occurring in
distributed systems sharing common resources. In our model transition
probabilities of resource allocation and deallocation are time and space
dependent. The process is driven by an ergodic Markov chain and is reflected on
the boundary of the d-dimensional cube. In the large resource limit, we prove
Freidlin-Wentzell estimates, we study the asymptotic of the deadlock time and
we show that the quasi-potential is a viscosity solution of a Hamilton-Jacobi
equation with a Neumann boundary condition. We give a complete analysis of the
colliding 2-stacks problem and show an example where the system has a stable
attractor which is a limit cycle
Exact Maximal Height Distribution of Fluctuating Interfaces
We present an exact solution for the distribution P(h_m,L) of the maximal
height h_m (measured with respect to the average spatial height) in the steady
state of a fluctuating Edwards-Wilkinson interface in a one dimensional system
of size L with both periodic and free boundary conditions. For the periodic
case, we show that P(h_m,L)=L^{-1/2}f(h_m L^{-1/2}) for all L where the
function f(x) is the Airy distribution function that describes the probability
density of the area under a Brownian excursion over a unit interval. For the
free boundary case, the same scaling holds but the scaling function is
different from that of the periodic case. Numerical simulations are in
excellent agreement with our analytical results. Our results provide an exactly
solvable case for the distribution of extremum of a set of strongly correlated
random variables.Comment: 4 pages revtex (two-column), 1 .eps figure include
Area distribution of the planar random loop boundary
We numerically investigate the area statistics of the outer boundary of
planar random loops, on the square and triangular lattices. Our Monte Carlo
simulations suggest that the underlying limit distribution is the Airy
distribution, which was recently found to appear also as area distribution in
the model of self-avoiding loops.Comment: 10 pages, 2 figures. v2: minor changes, version as publishe
Varieties of increasing trees
Résumé disponible dans les fichiers attaché