15,560 research outputs found
Coupled KdV equations derived from atmospherical dynamics
Some types of coupled Korteweg de-Vries (KdV) equations are derived from an
atmospheric dynamical system. In the derivation procedure, an unreasonable
-average trick (which is usually adopted in literature) is removed. The
derived models are classified via Painlev\'e test. Three types of
-function solutions and multiple soliton solutions of the models are
explicitly given by means of the exact solutions of the usual KdV equation. It
is also interesting that for a non-Painlev\'e integrable coupled KdV system
there may be multiple soliton solutions.Comment: 19 pages, 2 figure
Environmental impacts of grazed pastures
Large nitrogen (N) surplus and return of excreta-N in localised patches at high N rates in intensively grazed pasture systems markedly increases the risk of N losses to waterways and the atmosphere. Here are described the main routes of N input to grazed pastures, losses via N leaching, methane (CH4) and nitrous oxide (N2O) emissions. Furthermore farm N budgets and N use efficiency in relation to management strategies that can be applied to reduce N losses are discussed. Nitrate leaching increases exponentially with increased inputs and is closely related to urine patches, which also influence the leaching of dissolved organic N. High N2O emission rates in grazed pastures are related to fertiliser-N or N in excreta combined with compaction by animal treading. Grazing may considerably reduce CH3 emissions compared to indoor housing of cows. Pastures are occasionally cultivated due to sward deterioration followed by a rapid and extended period of N mineralization, contributing to an increased potential for losses. Good management of the pasture (e.g. reduced fertiliser input and reduced length of grazing) and of the mixed crop rotation during both the grassland and the arable phase (e.g. delayed ploughing time and a catch crop strategy) can considerably reduce the negative environmental impact of grazing. It is important to consider the whole farm system when evaluating environmental impact. In particular for green house gasses since the pasture may serve as a source of N2O and indirectly of CH3, but also as a sink of CO2 influenced by management practices on the farm
An Imaging and Spectral Study of Ten X-Ray Filaments around the Galactic Center
We report the detection of 10 new X-ray filaments using the data from the
{\sl Chandra} X-ray satellite for the inner ( parsec)
around the Galactic center (GC). All these X-ray filaments are characterized by
non-thermal energy spectra, and most of them have point-like features at their
heads that point inward. Fitted with the simple absorbed power-law model, the
measured X-ray flux from an individual filament in the 2-10 keV band is to ergs cm s and the
absorption-corrected X-ray luminosity is ergs s
at a presumed distance of 8 kpc to the GC. We speculate the origin(s) of these
filaments by morphologies and by comparing their X-ray images with the
corresponding radio and infrared images. On the basis of combined information
available, we suspect that these X-ray filaments might be pulsar wind nebulae
(PWNe) associated with pulsars of age yr. The fact
that most of the filament tails point outward may further suggest a high
velocity wind blowing away form the GC.Comment: 29 pages with 7 figures and 3 pages included. Accepted to Ap
PDMS/PVA composite ferroelectret for improved energy harvesting performance
This paper address the PDMS ferroelectret discharge issue for improved long- term energy harvesting performance. The PDMS/PVA ferroelectret is fabricated using a 3D-printed plastic mould technology and a functional PVA composite layer is introduced. The PDMS/PVA composite ferroelectret achieved 80% piezoelectric coefficient d33 remaining, compared with 40% without the proposed layer over 72 hours. Further, the retained percentage of output voltage is about 73% over 72 hours
Periodicities in Solar Coronal Mass Ejections
Mid-term quasi-periodicities in solar coronal mass ejections (CMEs) during
the most recent solar maximum cycle 23 are reported here for the first time
using the four-year data (February 5, 1999 to February 10, 2003) of the Large
Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric
Observatory (SOHO). In parallel, mid-term quasi-periodicities in solar X-ray
flares (class >M5.0) from the Geosynchronous Operational Environment Satellites
(GOES) and in daily averages of Ap index for geomagnetic disturbances from the
World Data Center (WDC) at the International Association for Geomagnetism and
Aeronomy (IAGA) are also examined for the same four-year time span. Several
conceptual aspects of possible equatorially trapped Rossby-type waves at and
beneath the solar photosphere are discussed.Comment: Accepted by MNRAS, 6 figure
New variable separation approach: application to nonlinear diffusion equations
The concept of the derivative-dependent functional separable solution, as a
generalization to the functional separable solution, is proposed. As an
application, it is used to discuss the generalized nonlinear diffusion
equations based on the generalized conditional symmetry approach. As a
consequence, a complete list of canonical forms for such equations which admit
the derivative-dependent functional separable solutions is obtained and some
exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
Global axisymmetric stability analysis for a composite system of two gravitationally coupled scale-free discs
In a composite system of gravitationally coupled stellar and gaseous discs,
we perform linear stability analysis for axisymmetric coplanar perturbations
using the two-fluid formalism. The background stellar and gaseous discs are
taken to be scale-free with all physical variables varying as powers of
cylindrical radius with compatible exponents. The unstable modes set in as
neutral modes or stationary perturbation configurations with angular frequency
.Comment: 7 pages using AAS styl
Stabilization of nonlinear velocity profiles in athermal systems undergoing planar shear flow
We perform molecular dynamics simulations of model granular systems
undergoing boundary-driven planar shear flow in two spatial dimensions with the
goal of developing a more complete understanding of how dense particulate
systems respond to applied shear. In particular, we are interested in
determining when these systems will possess linear velocity profiles and when
they will develop highly localized velocity profiles in response to shear. In
previous work on similar systems we showed that nonlinear velocity profiles
form when the speed of the shearing boundary exceeds the speed of shear waves
in the material. However, we find that nonlinear velocity profiles in these
systems are unstable at very long times. The degree of nonlinearity slowly
decreases in time; the velocity profiles become linear when the granular
temperature and density profiles are uniform across the system at long times.
We measure the time required for the velocity profiles to become linear
and find that increases as a power-law with the speed of the shearing
boundary and increases rapidly as the packing fraction approaches random close
packing. We also performed simulations in which differences in the granular
temperature across the system were maintained by vertically vibrating one of
the boundaries during shear flow. We find that nonlinear velocity profiles form
and are stable at long times if the difference in the granular temperature
across the system exceeds a threshold value that is comparable to the glass
transition temperature in an equilibrium system at the same average density.
Finally, the sheared and vibrated systems form stable shear bands, or highly
localized velocity profiles, when the applied shear stress is lowered below the
yield stress of the static part of the system.Comment: 11 pages, 14 figure
Effect of manganese doping on the size effect of lead zirconate titanate thin films and the extrinsic nature of dead layers
We have investigated the size effect in lead zirconate titanate (PZT) thin
films with a range of manganese (Mn) doping concentrations. We found that the
size effect in the conventional Pt/PZT/Pt thin-film capacitors could be
systematically reduced and almost completely eliminated by increasing Mn doping
concentration. The interfacial layer at the electrode-film interface appears to
disappear almost entirely for the PZT films with 2% Mn doping levels, confirmed
by the fits using the conventional in-series capacitor model. Our work
indicates that the size effect in ferroelectrics is extrinsic in nature,
supporting the work by Saad et al. Other implications of our results have also
been discussed. By comparing a variety of experimental studies in the
literature we propose a scenario that the dead layer between PZT (or barium
strontium titanate, BST) and metal electrodes such as Pt and Au might have a
defective pyrochlore/fluorite structure (possibly with a small portion of
ferroelectric perovskite phase).Comment: 21 pages, 6 figure
- …