15,478 research outputs found

    Periodic and Localized Solutions of the Long Wave-Short Wave Resonance Interaction Equation

    Get PDF
    In this paper, we investigate the (2+1) dimensional long wave-short wave resonance interaction (LSRI) equation and show that it possess the Painlev\'e property. We then solve the LSRI equation using Painlev\'e truncation approach through which we are able to construct solution in terms of three arbitrary functions. Utilizing the arbitrary functions present in the solution, we have generated a wide class of elliptic function periodic wave solutions and exponentially localized solutions such as dromions, multidromions, instantons, multi-instantons and bounded solitary wave solutions.Comment: 13 pages, 6 figure

    Coupled KdV equations derived from atmospherical dynamics

    Full text link
    Some types of coupled Korteweg de-Vries (KdV) equations are derived from an atmospheric dynamical system. In the derivation procedure, an unreasonable yy-average trick (which is usually adopted in literature) is removed. The derived models are classified via Painlev\'e test. Three types of τ\tau-function solutions and multiple soliton solutions of the models are explicitly given by means of the exact solutions of the usual KdV equation. It is also interesting that for a non-Painlev\'e integrable coupled KdV system there may be multiple soliton solutions.Comment: 19 pages, 2 figure

    A nonlinear transformation of the dispersive long wave equations in (2+1) dimensions and its applications

    Full text link
    A nonlinear transformation of the dispersive long wave equations in (2+1) dimensions is derived by using the homogeneous balance method. With the aid of the transformation given here, exact solutions of the equations are obtained

    Periodicities in Solar Coronal Mass Ejections

    Full text link
    Mid-term quasi-periodicities in solar coronal mass ejections (CMEs) during the most recent solar maximum cycle 23 are reported here for the first time using the four-year data (February 5, 1999 to February 10, 2003) of the Large Angle Spectrometric Coronagraph (LASCO) onboard the Solar and Heliospheric Observatory (SOHO). In parallel, mid-term quasi-periodicities in solar X-ray flares (class >M5.0) from the Geosynchronous Operational Environment Satellites (GOES) and in daily averages of Ap index for geomagnetic disturbances from the World Data Center (WDC) at the International Association for Geomagnetism and Aeronomy (IAGA) are also examined for the same four-year time span. Several conceptual aspects of possible equatorially trapped Rossby-type waves at and beneath the solar photosphere are discussed.Comment: Accepted by MNRAS, 6 figure

    From one to infinity: symmetries of integrable systems

    Full text link
    Integrable systems constitute an essential part of modern physics. Traditionally, to approve a model is integrable one has to find its infinitely many symmetries or conserved quantities. In this letter, taking the well known Korteweg-de Vries and Boussinesq equations as examples, we show that it is enough to find only one nonlocal key-symmetry to guarantee the integrability. Starting from the nonlocal key-symmetry, recursion operator(s) and then infinitely many symmetries and Lax pairs can be successfully found.Comment: 6 page

    New variable separation approach: application to nonlinear diffusion equations

    Full text link
    The concept of the derivative-dependent functional separable solution, as a generalization to the functional separable solution, is proposed. As an application, it is used to discuss the generalized nonlinear diffusion equations based on the generalized conditional symmetry approach. As a consequence, a complete list of canonical forms for such equations which admit the derivative-dependent functional separable solutions is obtained and some exact solutions to the resulting equations are described.Comment: 19 pages, 2 fig
    corecore