8 research outputs found

    A fuzzy-stochastic Constraint Programming Model for Hazmat Road Transportation Considering Terrorism Attacking

    Get PDF
    Abstractachieved on Hazmat transportation routing problems in order to minimize risk-related costs which is consequence of a natural accident. As the terrorist threat is growing, Hazmat shipment has became a new target of terrorist attacks, it is therefore necessary to consider the terrorist threat into the Hazmat routing model. In this work, we consider the following hazmat transportation scheduling problem in traffic engineering: a hazmat shipment has to be shipped over a road transportation network in order to transport a given amount of hazardous materials from a specific origin point to a specific destination point every day. We design a route to minimize the risks from the natural accident and the uncertainty of a terrorist threat, and develop a fuzzy-stochastic constraint programming method to deal with multiple uncertainties presented in terms of fuzzy sets, interval values and random variables which representing the probabilities and fatality rates of the terrorist attacking. Finally, it illustrates the methodology on a case study

    Highly sensitive light-induced thermoelastic spectroscopy oxygen sensor with co-coupling photoelectric and thermoelastic effect of quartz tuning fork

    No full text
    A light-induced thermoelastic spectroscopy (LITES) gas detection method based on CH3NH3PbI3 perovskite-coated quartz tuning fork (QTF) was proposed. By coating CH3NH3PbI3 thin film on the surface of ordinary QTF, a Schottky junction with silver electrodes was formed. The co-coupling of photoelectric effect and thermoelastic effect of CH3NH3PbI3-QTF results in a significant improvement in detection performance. The oxygen (O2) was select as the target analyte for measurement, and experimental results show that compared with the commercial standard QTF, the introduction of CH3NH3PbI3 perovskite Schottky junction increases the 2f signal amplitude and signal-to-noise ratio (SNR) by ∼106 times and ∼114 times, respectively. The minimum detection limit (MDL) of this LITES system is 260 ppm, and the corresponding normalized noise equivalent absorption coefficient (NNEA) is 9.21 × 10−13 cm−1·W·Hz−1/2. The Allan analysis of variance results indicate that when the average time is 564 s, the detection sensitivity can reach 83 ppm. This is the first time that QTF resonance detection has been combined with perovskite Schottky junctions for highly sensitive optical gas detection

    A Graphene-Based Flexible Pressure Sensor with Applications to Plantar Pressure Measurement and Gait Analysis

    Get PDF
    In the present study, we propose and develop a flexible pressure sensor based on the piezoresistive effect of multilayer graphene films on polyester textile. The pressure response results from the deformation of graphene conductive network structure and the changes in resistance. Here, we show that the graphene pressure sensor can achieve a sensitivity value of 0.012 kPa − 1 , the measurement range can be as high as 800 kPa, and the response time can reach to 50 ms. Subsequently, a stable in-shoe wireless plantar pressure measurement system is developed and dynamic pressure distribution is acquired in real-time. Overall, the graphene textile pressure sensor has the advantage of wide dynamic range, flexibility and comfort, which provides the high possibility for footwear evaluation, clinical gait analysis and pathological foot diagnosis

    Flexible Graphene Electrodes for Prolonged Dynamic ECG Monitoring

    No full text
    This paper describes the development of a graphene-based dry flexible electrocardiography (ECG) electrode and a portable wireless ECG measurement system. First, graphene films on polyethylene terephthalate (PET) substrates and graphene paper were used to construct the ECG electrode. Then, a graphene textile was synthesized for the fabrication of a wearable ECG monitoring system. The structure and the electrical properties of the graphene electrodes were evaluated using Raman spectroscopy, scanning electron microscopy (SEM), and alternating current impedance spectroscopy. ECG signals were then collected from healthy subjects using the developed graphene electrode and portable measurement system. The results show that the graphene electrode was able to acquire the typical characteristics and features of human ECG signals with a high signal-to-noise (SNR) ratio in different states of motion. A week-long continuous wearability test showed no degradation in the ECG signal quality over time. The graphene-based flexible electrode demonstrates comfortability, good biocompatibility, and high electrophysiological detection sensitivity. The graphene electrode also combines the potential for use in long-term wearable dynamic cardiac activity monitoring systems with convenience and comfort for use in home health care of elderly and high-risk adults

    Dynamic Balance Measurement and Quantitative Assessment Using Wearable Plantar-Pressure Insoles in a Pose-Sensed Virtual Environment

    Get PDF
    The center of plantar pressure (COP) reflects the dynamic balance of subjects to a certain extent. In this study, wearable pressure insoles are designed, body pose measure is detected by the Kinect sensor, and a balance evaluation system is formulated. With the designed games for the interactive actions, the Kinect sensor reads the skeletal poses to judge whether the desired action is performed, and the pressure insoles simultaneously collect the plantar pressure data. The COP displacement and its speed are calculated to determine the body sway and the ability of balance control. Significant differences in the dispersion of the COP distribution of the 12 subjects have been obtained, indicating different balancing abilities of the examined subjects. A novel assessment process is also proposed in the paper, in which a correlation analysis is made between the de facto sit-to-stand (STS) test and the proposed method; the Pearson and Spearman correlations are also conducted, which reveal a significant positive correlation. Finally, four undergraduate volunteers with a right leg sports injury participate in the experiments. The experimental results show that the normal side and abnormal side have significantly different characters, suggesting that our method is effective and robust for balance measurements
    corecore