9 research outputs found

    Imprints of a Primordial Preferred Direction on the Microwave Background

    Get PDF
    Rotational invariance is a well-established feature of low-energy physics. Violations of this symmetry must be extremely small today, but could have been larger in earlier epochs. In this paper we examine the consequences of a small breaking of rotational invariance during the inflationary era when the primordial density fluctuations were generated. Assuming that a fixed-norm vector picked out a preferred direction during the inflationary era, we explore the imprint it would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients. We suggest that it is natural to expect that the imprint on the primordial power spectrum of a preferred spatial direction is approximately scale-invariant, and examine a simple model in which this is true.Comment: 7 pages, no figures; v5: Corrections, as well as use of more standard convention, in section I

    Bayesian analysis of an anisotropic universe model: systematics and polarization

    Get PDF
    We revisit the anisotropic universe model previously developed by Ackerman, Carroll and Wise (ACW), and generalize both the theoretical and computational framework to include polarization and various forms of systematic effects. We apply our new tools to simulated WMAP data in order to understand the potential impact of asymmetric beams, noise mis-estimation and potential Zodiacal light emission. We find that neither has any significant impact on the results. We next show that the previously reported ACW signal is also present in the 1-year WMAP temperature sky map presented by Liu & Li, where data cuts are more aggressive. Finally, we reanalyze the 5-year WMAP data taking into account a previously neglected (-i)^{l-l'}-term in the signal covariance matrix. We still find a strong detection of a preferred direction in the temperature map. Including multipoles up to l=400, the anisotropy amplitude for the W-band is found to be g = 0.29 +- 0.031, nonzero at 9 sigma. However, the corresponding preferred direction is also shifted very close to the ecliptic poles at (l,b)= (96,30), in agreement with the analysis of Hanson & Lewis, indicating that the signal is aligned along the plane of the solar system. This strongly suggests that the signal is not of cosmological origin, but most likely is a product of an unknown systematic effect. Determining the nature of the systematic effect is of vital importance, as it might affect other cosmological conclusions from the WMAP experiment. Finally, we provide a forecast for the Planck experiment including polarization.Comment: 9 pages, 8 figure

    Dark Matter and Dark Radiation

    Get PDF
    We explore the feasibility and astrophysical consequences of a new long-range U(1) gauge field ("dark electromagnetism") that couples only to dark matter, not to the Standard Model. The dark matter consists of an equal number of positive and negative charges under the new force, but annihilations are suppressed if the dark matter mass is sufficiently high and the dark fine-structure constant α^\hat\alpha is sufficiently small. The correct relic abundance can be obtained if the dark matter also couples to the conventional weak interactions, and we verify that this is consistent with particle-physics constraints. The primary limit on α^\hat\alpha comes from the demand that the dark matter be effectively collisionless in galactic dynamics, which implies α^≲10−4\hat\alpha \lesssim 10^{-4} for TeV-scale dark matter. These values are easily compatible with constraints from structure formation and primordial nucleosynthesis. We raise the prospect of interesting new plasma effects in dark matter dynamics, which remain to be explored.Comment: 14 pages, 6 figures Updated equations and figure

    Imprints of a primordial preferred direction on the microwave background

    Get PDF
    Rotational invariance is a well-established feature of low-energy physics. Violations of this symmetry must be extremely small today, but could have been larger in earlier epochs. In this paper we examine the consequences of a small breaking of rotational invariance during the inflationary era when the primordial density fluctuations were generated. Assuming that a fixed-norm vector picked out a preferred-direction during the inflationary era, we explore the imprint it would leave on the cosmic microwave background anisotropy, and provide explicit formulas for the expected amplitudes of the spherical-harmonic coefficients. We suggest that it is natural to expect that the imprint on the primordial power spectrum of a preferred spatial direction is approximately scale-invariant, and examine a simple model in which this is true

    Constraining the Inflationary Equation of State

    Full text link
    We explore possible constraints on the inflationary equation state: p=w\rho. While w must be close to -1 for those modes that contribute to the observed power spectrum, for those modes currently out of experimental reach, the constraints on w are much weaker, with only w<-1/3 as an a priori requirement. We find, however, that limits on the reheat temperature and the inflationary energy scale constrain w further, though there is still ample parameter space for a vastly different (accelerating) equation of state between the end of quasi-de Sitter inflation and the beginning of the radiation-dominated era. In the event that such an epoch of acceleration could be observed, we review the consequences for the primordial power spectrum.Comment: 12 pages, 2 figur

    Light Scalars and the Generation of Density Perturbations During Preheating or Inflaton Decay

    Full text link
    Reheating after inflation can occur through inflaton decay or efficient parametric resonant production of particles from the oscillation of the inflaton. If the particles produced interact with scalars that were light during inflation, then significant super-horizon density perturbations are generated during this era. These perturbations can be highly non-Gaussian.Comment: 6 pages, 4 figures. Clarifying discussion added. Conclusions unchange

    A Quest for the Physics Beyond the Cosmological Standard Model

    Get PDF
    Recent advances in observational cosmology have culminated in the establishment of the cosmological standard model. In spite of this remarkable achievement, the underlying physics remains unknown. In this thesis we propose models whose predictions can be compared with observations, and can thereby help us discover this as-yet unknown physics of the Universe. We examine (i) the consequences that a preferred direction during the inflationary era would have on the Cosmic Microwave Background (CMB) anisotropies, (ii) the effect of asymmetric beams in the Wilkinson Microwave Anisotropy Probe (WMAP), (iii) astrophysical consequences of a dark photon that couples only to dark matter, and (iv) explore a mechanism for producing density perturbations during the period of reheating.</p
    corecore