34 research outputs found

    Incompatible Magnetic Order in Multiferroic Hexagonal DyMnO3

    Full text link
    Magnetic order of the manganese and rare-earth lattices according to different symmetry representations is observed in multiferroic hexagonal (h-) DyMnO3_3 by optical second harmonic generation and neutron diffraction. The incompatibility reveals that the 3d-4f coupling in the h-RRMnO3_3 system (RR = Sc, Y, In, Dy - Lu) is substantially less developed than commonly expected. As a consequence, magnetoelectric coupling effects in this type of split-order parameter multiferroic that were previously assigned to a pronounced 3d-4f coupling have now to be scrutinized with respect to their origin

    Second harmonic generation on incommensurate structures: The case of multiferroic MnWO4

    Full text link
    A comprehensive analysis of optical second harmonic generation (SHG) on an incommensurate (IC) magnetically ordered state is presented using multiferroic MnWO4 as model compound. Two fundamentally different SHG contributions coupling to the primary IC magnetic order or to secondary commensurate projections of the IC state, respectively, are distinguished. Whereas the latter can be described within the formalism of the 122 commensurate magnetic point groups the former involves a breakdown of the conventional macroscopic symmetry analysis because of its sensitivity to the lower symmetry of the local environment in a crystal lattice. Our analysis thus foreshadows the fusion of the hitherto disjunct fields of nonlinear optics and IC order in condensed-matter systems

    Robust isothermal electric switching of interface magnetization: A route to voltage-controlled spintronics

    Full text link
    Roughness-insensitive and electrically controllable magnetization at the (0001) surface of antiferromagnetic chromia is observed using magnetometry and spin-resolved photoemission measurements and explained by the interplay of surface termination and magnetic ordering. Further, this surface in placed in proximity with a ferromagnetic Co/Pd multilayer film. Exchange coupling across the interface between chromia and Co/Pd induces an electrically controllable exchange bias in the Co/Pd film, which enables a reversible isothermal (at room temperature) shift of the global magnetic hysteresis loop of the Co/Pd film along the magnetic field axis between negative and positive values. These results reveal the potential of magnetoelectric chromia for spintronic applications requiring non-volatile electric control of magnetization.Comment: Single PDF file: 27 pages, 6 figures; version of 12/30/09; submitted to Nature Material

    New features in the phase diagram of TbMnO3_3

    Full text link
    The (H,T)-phase diagram of the multiferroic perovskite TbMnO3_3 was studied by high-resolution thermal expansion α(T)\alpha(T) and magnetostriction ΔL(H)/L\Delta L(H)/L measurements. Below TN≃42T_{N}\simeq 42 K, TbMnO3_3 shows antiferromagnetic order, which changes at TFE≃28T_{FE}\simeq 28 K where simultaneously a spontaneous polarization P∣∣cP||c develops. Sufficiently high magnetic fields applied along aa or bb induce a polarization flop to P∣∣aP||a. We find that all of these transitions are strongly coupled to the lattice parameters. Thus, our data allow for a precise determination of the phase boundaries and also yield information about their uniaxial pressure dependencies. The strongly hysteretic phase boundary to the ferroelectric phase with P∣∣aP||a is derived in detail. Contrary to previous reports, we find that even in high magnetic fields there are no direct transitions from this phase to the paraelectric phase. We also determine the various phase boundaries in the low-temperature region related to complex reordering transitions of the Tb moments.Comment: 17 pages including 9 figure

    Relaxor ferroelectricity and colossal magnetocapacitive coupling in ferromagnetic CdCr2S4

    Full text link
    Multiferroic materials, which reveal magnetic and electric order, are in the focus of recent solid state research. Especially the simultaneous occurrence of ferroelectricity and ferromagnetism, combined with an intimate coupling of magnetization and polarization via magneto-capacitive effects, could pave the way for a new generation of electronic devices. Here we present measurements on a simple cubic spinel with unusual properties: It shows ferromagnetic order and simultaneously relaxor ferroelectricity, i.e. a ferroelectric cluster state, reached by a smeared-out phase transition, both with sizable ordering temperatures and moments. Close to the ferromagnetic ordering temperature the magneto-capacitive coupling, characterized by a variation of the dielectric constant in an external magnetic field, reaches colossal values of nearly 500%. We attribute the relaxor properties to geometric frustration, which is well known for magnetic moments, but here is found to impede long-range order of the structural degrees of freedom.Comment: 4 pages, 3 figure

    Interconversion of multiferroic domains and domain walls

    No full text
    International audienceAbstract Systems with long-range order like ferromagnetism or ferroelectricity exhibit uniform, yet differently oriented three-dimensional regions called domains that are separated by two-dimensional topological defects termed domain walls. A change of the ordered state across a domain wall can lead to local non-bulk physical properties such as enhanced conductance or the promotion of unusual phases. Although highly desirable, controlled transfer of these properties between the bulk and the spatially confined walls is usually not possible. Here, we demonstrate this crossover by confining multiferroic Dy 0.7 Tb 0.3 FeO 3 domains into multiferroic domain walls at an identified location within a non-multiferroic environment. This process is fully reversible; an applied magnetic or electric field controls the transformation. Aside from expanding the concept of multiferroic order, such interconversion can be key to addressing antiferromagnetic domain structures and topological singularities
    corecore