96 research outputs found

    Visualization of Spatiotemporal Energy Dynamics of Hippocampal Neurons by Mass Spectrometry during a Kainate-Induced Seizure

    Get PDF
    We report the use of matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry combined with capillary electrophoresis (CE) mass spectrometry to visualize energy metabolism in the mouse hippocampus by imaging energy-related metabolites. We show the distribution patterns of ATP, ADP, and AMP in the hippocampus as well as changes in their amounts and distribution patterns in a murine model of limbic, kainate-induced seizure. As an acute response to kainate administration, we found massive and moderate reductions in ATP and ADP levels, respectively, but no significant changes in AMP levels—especially in cells of the CA3 layer. The results suggest the existence of CA3 neuron-selective energy metabolism at the anhydride bonds of ATP and ADP in the hippocampal neurons during seizure. In addition, metabolome analysis of energy synthesis pathways indicates accelerated glycolysis and possibly TCA cycle activity during seizure, presumably due to the depletion of ATP. Consistent with this result, the observed energy depletion significantly recovered up to 180 min after kainate administration. However, the recovery rate was remarkably low in part of the data-pixel population in the CA3 cell layer region, which likely reflects acute and CA3-selective neural death. Taken together, the present approach successfully revealed the spatiotemporal energy metabolism of the mouse hippocampus at a cellular resolution—both quantitatively and qualitatively. We aim to further elucidate various metabolic processes in the neural system

    Galanin Receptor 1 Deletion Exacerbates Hippocampal Neuronal Loss after Systemic Kainate Administration in Mice

    Get PDF
    Galanin is a neuropeptide with a wide distribution in the central and peripheral nervous systems and whose physiological effects are mediated through three G protein-coupled receptor subtypes, GalR1, GalR2, and GalR3. Several lines of evidence indicate that galanin, as well as activation of the GalR1 receptor, is a potent and effective modulator of neuronal excitability in the hippocampus.In order to test more formally the potential influence of GalR1 on seizure-induced excitotoxic cell death, we conducted functional complementation tests in which transgenic mice that exhibit decreased expression of the GalR1 candidate mRNA underwent kainate-induced status epilepticus to determine if the quantitative trait of susceptibility to seizure-induced cell death is determined by the activity of GalR1. In the present study, we report that reduction of GalR1 mRNA via null mutation or injection of the GalR1 antagonist, galantide, prior to kainate-induced status epilepticus induces hippocampal damage in a mouse strain known to be highly resistant to kainate-induced neuronal injury. Wild-type and GalR1 knockout mice were subjected to systemic kainate administration. Seven days later, Nissl and NeuN immune- staining demonstrated that hippocampal cell death was significantly increased in GalR1 knockout strains and in animals injected with the GalR1 antagonist. Compared to GalR1-expressing mice, GalR1-deficient mice had significantly larger hippocampal lesions after status epilepticus.Our results suggest that a reduction of GalR1 expression in the C57BL/6J mouse strain renders them susceptible to excitotoxic injury following systemic kainate administration. From these results, GalR1 protein emerges as a new molecular target that may have a potential therapeutic value in modulating seizure-induced cell death

    Impact of inhibitory constraint of interneurons on neuronal excitability

    No full text

    Early induction of mRNA for calbindin-D28k and BDNF but not NT-3 in rat hippocampus after kainic acid treatment.

    No full text
    The influence of kainic acid (KA), which induces acute seizures, on expression of mRNA for the calcium-binding protein, calbindin-D28k, brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and early-response genes [c-fos, zif268 (NGFI-A), nur77 (NGFI-B)] was examined in rat hippocampus by Northern blot analysis. A significant increase (3.2-fold) in BDNF mRNA was observed 1 h after KA injection (12 mg/kg i.p.) and peak expression (9.4-fold) occurred 3 h after KA. The induction of BDNF mRNA was preceded by the induction of c-fos, mRNA (30 min after KA) and was followed by the induction of calbindin-D28k mRNA (3.5-fold 3 h after KA; a maximal response was at 3-6 h after KA). Region-specific changes, analyzed by immunocytochemistry and in situ hybridization, indicated that the most dramatic increases in calbindin protein and mRNA after KA treatment were in the dentate gyrus. Although calbindin-D28k and BDNF mRNAs were induced, a 3.4-3.8-fold decrease in NT-3 mRNA was observed by Northern analysis 3-24 h after KA treatment. Calbindin-D28k gene expression was also examined in rats with a chronic epileptic state characterized by recurrent seizures established with an episode of electrical stimulation-induced status epilepticus (SE). When these animals were examined 30 days post-SE, no changes in hippocampal calbindin-D28k mRNA were observed. Our findings suggest that the induction of calbindin-D28k mRNA (which may be interrelated to the induction of BDNF mRNA) is an early response which may not be related to enhanced neuronal activity or seizures per se, but rather to maintaining neuronal viability
    • …
    corecore