10 research outputs found
CcpA- and Shm2-pulsed myeloid dendritic cells induce T-cell activation and enhance the neutrophilic oxidative burst response to aspergillus fumigatus
Aspergillus fumigatus causes life-threatening opportunistic infections in immunocompromised patients. As therapeutic outcomes of invasive aspergillosis (IA) are often unsatisfactory, the development of targeted immunotherapy remains an important goal. Linking the innate and adaptive immune system, dendritic cells are pivotal in anti-Aspergillus defense and have generated interest as a potential immunotherapeutic approach in IA. While monocyte-derived dendritic cells (moDCs) require ex vivo differentiation, antigen-pulsed primary myeloid dendritic cells (mDCs) may present a more immediate platform for immunotherapy. To that end, we compared the response patterns and cellular interactions of human primary mDCs and moDCs pulsed with an A. fumigatus lysate and two A. fumigatus proteins (CcpA and Shm2) in a serum-free, GMP-compliant medium. CcpA and Shm2 triggered significant upregulation of maturation markers in mDCs and, to a lesser extent, moDCs. Furthermore, both A. fumigatus proteins elicited the release of an array of key pro-inflammatory cytokines including TNF-α, IL-1β, IL-6, IL-8, and CCL3 from both DC populations. Compared to moDCs, CcpA- and Shm2-pulsed mDCs exhibited greater expression of MHC class II antigens and stimulated stronger proliferation and IFN-γ secretion from autologous CD4+ and CD8+ T-cells. Moreover, supernatants of CcpA- and Shm2-pulsed mDCs significantly enhanced the oxidative burst in allogeneic neutrophils co-cultured with A. fumigatus germ tubes. Taken together, our in vitro data suggest that ex vivo CcpA- and Shm2-pulsed primary mDCs have the potential to be developed into an immunotherapeutic approach to tackle IA
Recommended from our members
Effect of Hydrocortisone on Mortality and Organ Support in Patients With Severe COVID-19: The REMAP-CAP COVID-19 Corticosteroid Domain Randomized Clinical Trial.
Importance: Evidence regarding corticosteroid use for severe coronavirus disease 2019 (COVID-19) is limited. Objective: To determine whether hydrocortisone improves outcome for patients with severe COVID-19. Design, Setting, and Participants: An ongoing adaptive platform trial testing multiple interventions within multiple therapeutic domains, for example, antiviral agents, corticosteroids, or immunoglobulin. Between March 9 and June 17, 2020, 614 adult patients with suspected or confirmed COVID-19 were enrolled and randomized within at least 1 domain following admission to an intensive care unit (ICU) for respiratory or cardiovascular organ support at 121 sites in 8 countries. Of these, 403 were randomized to open-label interventions within the corticosteroid domain. The domain was halted after results from another trial were released. Follow-up ended August 12, 2020. Interventions: The corticosteroid domain randomized participants to a fixed 7-day course of intravenous hydrocortisone (50 mg or 100 mg every 6 hours) (n = 143), a shock-dependent course (50 mg every 6 hours when shock was clinically evident) (n = 152), or no hydrocortisone (n = 108). Main Outcomes and Measures: The primary end point was organ support-free days (days alive and free of ICU-based respiratory or cardiovascular support) within 21 days, where patients who died were assigned -1 day. The primary analysis was a bayesian cumulative logistic model that included all patients enrolled with severe COVID-19, adjusting for age, sex, site, region, time, assignment to interventions within other domains, and domain and intervention eligibility. Superiority was defined as the posterior probability of an odds ratio greater than 1 (threshold for trial conclusion of superiority >99%). Results: After excluding 19 participants who withdrew consent, there were 384 patients (mean age, 60 years; 29% female) randomized to the fixed-dose (n = 137), shock-dependent (n = 146), and no (n = 101) hydrocortisone groups; 379 (99%) completed the study and were included in the analysis. The mean age for the 3 groups ranged between 59.5 and 60.4 years; most patients were male (range, 70.6%-71.5%); mean body mass index ranged between 29.7 and 30.9; and patients receiving mechanical ventilation ranged between 50.0% and 63.5%. For the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively, the median organ support-free days were 0 (IQR, -1 to 15), 0 (IQR, -1 to 13), and 0 (-1 to 11) days (composed of 30%, 26%, and 33% mortality rates and 11.5, 9.5, and 6 median organ support-free days among survivors). The median adjusted odds ratio and bayesian probability of superiority were 1.43 (95% credible interval, 0.91-2.27) and 93% for fixed-dose hydrocortisone, respectively, and were 1.22 (95% credible interval, 0.76-1.94) and 80% for shock-dependent hydrocortisone compared with no hydrocortisone. Serious adverse events were reported in 4 (3%), 5 (3%), and 1 (1%) patients in the fixed-dose, shock-dependent, and no hydrocortisone groups, respectively. Conclusions and Relevance: Among patients with severe COVID-19, treatment with a 7-day fixed-dose course of hydrocortisone or shock-dependent dosing of hydrocortisone, compared with no hydrocortisone, resulted in 93% and 80% probabilities of superiority with regard to the odds of improvement in organ support-free days within 21 days. However, the trial was stopped early and no treatment strategy met prespecified criteria for statistical superiority, precluding definitive conclusions. Trial Registration: ClinicalTrials.gov Identifier: NCT02735707
Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19
IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19.
Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19.
DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022).
INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days.
MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes.
RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively).
CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes.
TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
Interaction of dendritic cell subtypes with the human pathogenic mould fungus
Die invasive Aspergillose (IA) z¨ ahlt zu den seltenen, bei immunsupprimierten Patienten
jedoch mit einer hohen Letalit¨ at verbundenen Infektionskrankheiten. Sie wird, wie alle
Aspergillosen, durch den humanpathogenen Schimmelpilz Aspergillus fumigatus ausgel¨ ost.
Bis heute ist die oft nicht effektive Therapie einer IA mit hohen Nebenwirkungen und
Kosten verbunden. Die Entwicklung von Pathogen-spezifischen Immuntherapien soll durch
die Forschung im Bereich der immunologischen Infektionsbiologie vorangetrieben werden.
Fur neuen Erkenntnisse wird die Interaktion von humanen Immunzellen mit ¨ A. fumigatus
analysiert.
In der vorliegenden Studie wurde mit dendritischen Zellen (DCs) gearbeitet, da diese
Pilzmorphologien von A. fumigatus phagozytieren k¨ onnen und uber Antigenpr ¨ ¨ asentation
das adaptive Immunsystem aktivieren. Es wurden aus humanen Monozyten differenzierte DCs (moDCs) verwendet, mit welchen viele Forschergruppen aufgrund ihrer verfugbar ¨
großen Anzahl arbeiten. Allerdings dauert die Generierung von moDCs funf Tage. Aus ¨
dem peripheren Blut entstammende CD1c-positive myeloide DCs (mDCs) oder CD303-
positive plasmazytoide DCs (pDCs) k¨ onnen dagegen direkt nach der Isolation verwendet
werden. Die beiden DC-Populationen werden aus verschiedenen Vorl¨ auferzellen des h¨ amatopoetischen Systems im Knochenmark gebildet. Ihr Ph¨ anotyp und ihre Immunfunktionen
unterscheiden sich untereinander und auch von denen der moDCs.
In Interaktionsstudien konnte analysiert werden, dass die drei verwendeten DC-Subtypen
(moDCs, mDCs, pDCs) unterschiedlich auf A. fumigatus reagieren. moDCs und mDCs reiften in direktem Kontakt zu Aspergillus, sie sekretierten ein relativ ¨ ahnliches Zytokinprofil
und exprimierten die bekannten Aspergillus-Rezeptoren Dectin-1, TLR2 und TLR4. Im
Kontrast dazu verblieben pDCs trotz Aspergillus-Kontakt unreif und sekretierten nahezu
keine Zytokine. Da moDCs und mDCs eine Immunreaktion auf den Pilz zeigten, wurden
sie mit verschiedenen Aspergillus-Antigenen beladen und n¨ aher untersucht.
Bevor verschiedene Aspergillus-Antigene zur Beladung der DCs eingesetzt werden konnten, wurden diese analysiert und aufgereinigt. Hierfur wurde ein routinierter Arbeitsprozess ¨
etabliert. Zwei der vier verfugbaren Proteinantigene waren mit Endotoxin kontaminiert. ¨
Da schon geringe Mengen an Endotoxinen auf DCs einen stimulatorischen Effekt ausubten, ¨
wurden die Proteine mittels Affinit¨ atschromatografie von den verunreinigenden Endotoxinen befreit.
In den Stimulationsexperimenten wirkten die beiden Proteinantigene CcpA und SHMT
immunogen auf moDCs und mDCs. CcpA induzierte eine st¨ arkere Maturierung und Zytokinfreisetzung als SHMT. Auff¨ allig war, dass mDCs im Vergleich zu moDCs die Expression
von MHC Klasse II st¨ arker erh¨ ohten und mehr IL18 freisetzten. Die mit CcpA oder SHMT
beladenen moDCs und mDCs aktivierten autologe T-Zellen zur IFNg Sekretion und zur
Proliferation. Zudem wurden durch die beiden Proteine Aspergillus-spezifische, CD154-
positive T-Zellen induziert. Diese Aspergillus-spezifische Immunogenit¨ at von CcpA und
SHMT macht die beiden Proteine zu interessanten Kandidaten fur einen Vakzinierungs- ¨
Cocktail einer DC-Immuntherapie. Aspergillus Lysat induzierte als weiteres Antigen eine
T-Zell Immunantwort mit CD154-positiven T-Zellen. Zudem war die Proliferation und
IFNg Sekretion von T-Zellen induziert, obwohl moDCs und mDCs nicht reiften und nur
wenige Zytokine sekretierten. Die beiden Aspergillus-Proteine CpcB und fg-gap induzierten die Reifung und Zytokinsekretion von moDCs und mDCs nicht. Demzufolge sind CpcB
und fg-gap fur eine DC-Immuntherapie nicht empfehlenswert. ¨
Ein Vakzinierungs-Cocktail enth¨ alt in der Regel Adjuvantien, welche die Immunreaktion
verst¨ arken. Adjuvante Effekte auf moDCs konnten die getesteten Aspergillus-RezeptorLiganden Zymosan, Pam3CSK4, LPS ultrapur und R848 ausl¨ osen. Hyalurons¨ aure konnte keine Verbesserung der Reifung oder Vitalit¨ at von moDCs und mDCs bewirken. Die
Antigen-bedingte Reifung der DCs fur n ¨ ¨ otige Restimulationen w¨ ahrend der Therapie konnte mittels einer tiefgekuhlten Lagerung in CryoStor Einfriermedium stabil beibehalten ¨
werden.
Die beiden immunogenen Aspergillus-Proteine, die adjuvanten Rezeptor-Agonisten und
die stabile Lagerung in CryoStor k¨ onnen als elementare Grundsteine fur einen Vakzinierungs- ¨
Cocktail einer anti-fungalen DC-Immuntherapie mit moDCs oder mDCs angesehen werden.Invasive aspergillosis (IA) is one of the rare infectious diseases associated with a high
mortality rate that occurs in immunocompromised patients. Like all aspergillosis, it is caused by
the human pathogenic fungus Aspergillus fumigatus. No effective therapy of IA is known to date and
the current therapy is associated with high side effects and costs. More in-depth research is
needed in the field of immunological infection biology, such as the interactions of human immune
cells with A. fumigatus, for the development of pathogen-specific immunotherapies.
In the present study dendritic cells (DCs) are investigated due to their ability to phago- cytose
fungal morphologies of A. fumigatus and activate the adaptive immune system via antigen
presentation. Monocytes which differentiate into DCs (moDCs) are used by many research groups due
to their large numbers; however, their total generation time lasts five days. CD1c-positive myeloid
DCs (mDCs) and CD303-positive plasmacytoid DCs (pDCs) found in the peripheral blood can be used
directly after isolation. The two DC populations are formed from different precursor cells of the
hematopoietic system in the bone marrow and therefore their phenotype and immune functions differ
from each other and also from
those of moDCs. ..
Human dendritic cell subsets display distinct interactions with the pathogenic mould Aspergillus fumigatus
The mould Aspergillus fumigatus is primarily an opportunistic pathogen of immunocompromised patients. Once fungal spores have been inhaled they encounter cells of the innate immune system, which include dendritic cells (DCs). DCs are the key antigen-presenting cells of the immune system and distinct subtypes, which differ in terms of origin, morphology and function. This study has systematically compared the interactions between A. fumigatus and myeloid DCs (mDCs),plasmacytoid DCs (pDCs) and monocyte-derived DCs (moDCs). Analyses were performed by time-lapse video microscopy, scanning electron microscopy, plating assays, flow cytometry, 25-plex ELISA and transwell assays. The three subsets of DCs displayed distinct responses to the fungus with mDCs and moDCs showing the greatest similarities. mDCs and moDCs both produced rough convolutions and occasionally phagocyticcups upon exposure to A. fumigatus whereas pDCs maintained a smooth appearance. Both mDCs and moDCs phagocytosed conidia and germ tubes, while pDCs did not phagocytose any fungi. Analysis of cytokine release and maturation markers revealed specific differences in pro- and anti-inflammatory patterns between the different DC subsets. These distinct characteristics between the DC subsets highlight their differences and suggest specific roles of moDCs, mDCs and pDCs during their interaction with A. fumigatus in vivo
Proteomic profiling of serological responses to Aspergillus fumigatus antigens in patients with invasive Aspergillosis
Aspergillus fumigatus is the species that most commonly causes the opportunistic infection invasive aspergillosis (IA) in patients being treated for hematological malignancies. Little is known about the A. fumigatus proteins that trigger the production of Aspergillus-specific IgG antibodies during the course of IA. To characterize the serological response to A. fumigatus protein antigens, mycelial proteins were separated by 2-D gel electrophoresis. The gels were immunoblotted with sera from patients with probable and proven IA and control patients without IA. We identified 49 different fungal proteins, which gave a positive IgG antibody signal. Most of these antigens play a role in primary metabolism and stress responses. Overall, our analysis identified 18 novel protein antigens from A. fumigatus. To determine whether these antigens can be used as diagnostic or prognostic markers or exhibit a protective activity, we employed supervised machine learning with decision trees. We identified two candidates for further analysis, the protein antigens CpcB and Shm2. Heterologously produced Shm2 induced a strongly proinflammatory response in human peripheral blood mononuclear cells after in vitro stimulation. In contrast, CpcB did not activate the immune response of PBMCs. These findings could serve as the basis for the development of an immunotherapy of IA
Proteomic Profiling of Serological Responses to <i>Aspergillus fumigatus</i> Antigens in Patients with Invasive Aspergillosis
<i>Aspergillus fumigatus</i> is the species that most
commonly causes the opportunistic infection invasive aspergillosis
(IA) in patients being treated for hematological malignancies. Little
is known about the <i>A. fumigatus</i> proteins that trigger
the production of <i>Aspergillus</i>-specific IgG antibodies
during the course of IA. To characterize the serological response
to <i>A. fumigatus</i> protein antigens, mycelial proteins
were separated by 2-D gel electrophoresis. The gels were immunoblotted
with sera from patients with probable and proven IA and control patients
without IA. We identified 49 different fungal proteins, which gave
a positive IgG antibody signal. Most of these antigens play a role
in primary metabolism and stress responses. Overall, our analysis
identified 18 novel protein antigens from <i>A. fumigatus</i>. To determine whether these antigens can be used as diagnostic or
prognostic markers or exhibit a protective activity, we employed supervised
machine learning with decision trees. We identified two candidates
for further analysis, the protein antigens CpcB and Shm2. Heterologously
produced Shm2 induced a strongly proinflammatory response in human
peripheral blood mononuclear cells after <i>in vitro</i> stimulation. In contrast, CpcB did not activate the immune response
of PBMCs. These findings could serve as the basis for the development
of an immunotherapy of IA
Proteomic Profiling of Serological Responses to <i>Aspergillus fumigatus</i> Antigens in Patients with Invasive Aspergillosis
<i>Aspergillus fumigatus</i> is the species that most
commonly causes the opportunistic infection invasive aspergillosis
(IA) in patients being treated for hematological malignancies. Little
is known about the <i>A. fumigatus</i> proteins that trigger
the production of <i>Aspergillus</i>-specific IgG antibodies
during the course of IA. To characterize the serological response
to <i>A. fumigatus</i> protein antigens, mycelial proteins
were separated by 2-D gel electrophoresis. The gels were immunoblotted
with sera from patients with probable and proven IA and control patients
without IA. We identified 49 different fungal proteins, which gave
a positive IgG antibody signal. Most of these antigens play a role
in primary metabolism and stress responses. Overall, our analysis
identified 18 novel protein antigens from <i>A. fumigatus</i>. To determine whether these antigens can be used as diagnostic or
prognostic markers or exhibit a protective activity, we employed supervised
machine learning with decision trees. We identified two candidates
for further analysis, the protein antigens CpcB and Shm2. Heterologously
produced Shm2 induced a strongly proinflammatory response in human
peripheral blood mononuclear cells after <i>in vitro</i> stimulation. In contrast, CpcB did not activate the immune response
of PBMCs. These findings could serve as the basis for the development
of an immunotherapy of IA