13 research outputs found

    Throughput-Optimal Random Access with Order-Optimal Delay

    Full text link
    In this paper, we consider CSMA policies for scheduling of multihop wireless networks with one-hop traffic. The main contribution of this paper is to propose Unlocking CSMA (U-CSMA) policy that enables to obtain high throughput with low (average) packet delay for large wireless networks. In particular, the delay under U-CSMA policy becomes order-optimal. For one-hop traffic, delay is defined to be order-optimal if it is O(1), i.e., it stays bounded, as the network-size increases to infinity. Using mean field theory techniques, we analytically show that for torus (grid-like) interference topologies with one-hop traffic, to achieve a network load of ρ\rho, the delay under U-CSMA policy becomes O(1/(1ρ)3)O(1/(1-\rho)^{3}) as the network-size increases, and hence, delay becomes order optimal. We conduct simulations for general random geometric interference topologies under U-CSMA policy combined with congestion control to maximize a network-wide utility. These simulations confirm that order optimality holds, and that we can use U-CSMA policy jointly with congestion control to operate close to the optimal utility with a low packet delay in arbitrarily large random geometric topologies. To the best of our knowledge, it is for the first time that a simple distributed scheduling policy is proposed that in addition to throughput/utility-optimality exhibits delay order-optimality.Comment: 44 page

    Dynamic Control of Tunable Sub-optimal Algorithms for Scheduling of Time-varying Wireless Networks

    Full text link
    It is well known that for ergodic channel processes the Generalized Max-Weight Matching (GMWM) scheduling policy stabilizes the network for any supportable arrival rate vector within the network capacity region. This policy, however, often requires the solution of an NP-hard optimization problem. This has motivated many researchers to develop sub-optimal algorithms that approximate the GMWM policy in selecting schedule vectors. One implicit assumption commonly shared in this context is that during the algorithm runtime, the channel states remain effectively unchanged. This assumption may not hold as the time needed to select near-optimal schedule vectors usually increases quickly with the network size. In this paper, we incorporate channel variations and the time-efficiency of sub-optimal algorithms into the scheduler design, to dynamically tune the algorithm runtime considering the tradeoff between algorithm efficiency and its robustness to changing channel states. Specifically, we propose a Dynamic Control Policy (DCP) that operates on top of a given sub-optimal algorithm, and dynamically but in a large time-scale adjusts the time given to the algorithm according to queue backlog and channel correlations. This policy does not require knowledge of the structure of the given sub-optimal algorithm, and with low overhead can be implemented in a distributed manner. Using a novel Lyapunov analysis, we characterize the throughput stability region induced by DCP and show that our characterization can be tight. We also show that the throughput stability region of DCP is at least as large as that of any other static policy. Finally, we provide two case studies to gain further intuition into the performance of DCP.Comment: Submitted for journal consideration. A shorter version was presented in IEEE IWQoS 200

    On Stability Region and Delay Performance of Linear-Memory Randomized Scheduling for Time-Varying Networks

    Full text link
    Throughput optimal scheduling policies in general require the solution of a complex and often NP-hard optimization problem. Related literature has shown that in the context of time-varying channels, randomized scheduling policies can be employed to reduce the complexity of the optimization problem but at the expense of a memory requirement that is exponential in the number of data flows. In this paper, we consider a Linear-Memory Randomized Scheduling Policy (LM-RSP) that is based on a pick-and-compare principle in a time-varying network with NN one-hop data flows. For general ergodic channel processes, we study the performance of LM-RSP in terms of its stability region and average delay. Specifically, we show that LM-RSP can stabilize a fraction of the capacity region. Our analysis characterizes this fraction as well as the average delay as a function of channel variations and the efficiency of LM-RSP in choosing an appropriate schedule vector. Applying these results to a class of Markovian channels, we provide explicit results on the stability region and delay performance of LM-RSP.Comment: Long version of preprint to appear in the IEEE Transactions on Networkin

    Stochastic Control of Time-varying Wireless Networks

    No full text
    One critical step to successfully integrate wireless data networks to the high-speed wired backbone is the design of network control policies that efficiently utilize resources to provide Quality of Service (QoS) to the users in the integrated networks. Such a design has remained a challenge since wireless networks are time-varying in nature, not only in terms of user/packet arrivals but also in terms of physical channel conditions and access opportunities. In this thesis, we study the stochastic control of time-varying networks to design efficient scheduling and resource allocation policies. In particular, in Chapter 3, we focus on a broad class of control policies that work based on a pick-and-compare principle for networks with time-varying channels. By trading the throughput for complexity and memory requirement, these policies require less complexity compared to the well-investigated throughput-optimal Generalized Maximum Weight Matching (GMWM) policy and also require only linear-memory storage with the number of data-flows. Through Lyapunov analysis tools, we characterize the stability region and delay performance of the studied policies and show how they vary in response to the channel variations. In Chapter 4, we go into further detail and consider the problem of network control from a new perspective through which we carefully incorporate the time-efficiency of underlying scheduling algorithms. Specifically, we develop a policy that dynamically adjusts the time given to the available scheduling algorithms according to queue-backlog and channel correlations. We study the resulting stability region of developed policy and show that the region is at least as large as the one for any static policy. Finally, motivated by the current under-utilization of wireless spectrum, in Chapter 5, we investigate the control of cognitive radio networks as a special example of networks that provide time-varying access opportunities. We assume that users dynamically join and leave the network and may have different utility functions, or could collaborate for a common purpose. We develop a policy that performs joint admission and resource control and works for any user load, either inside or outside the capacity region. Through Lyapunov Optimization techniques, we show that the developed policy can achieve a utility performance arbitrarily close to the optimality with a tradeoff in the average service delay of admitted users.Ph

    Effect of Partially Correlated Data on Clustering in Wireless Sensor Networks

    No full text
    In wireless sensor networks, clustering allows the aggregation of sensor data. It is well known that leveraging the correlation between different samples of the observed data will lead to better utilization of energy reserve. However, no previous work has analyzed the effect of non-ideal data aggregation in multi-hop sensor networks. In this paper, we propose a novel analytical framework to study how partially correlated data affect the performance of clustering algorithms. We analyze the behavior of multi-hop routing and, by combining random geometry techniques and rate distortion theory, predict the total energy consumption and network lifetime. We show that when a moderate amount of correlation is available, the optimal probabilities that lead to minimum energy consumption are far from optimality in terms of network lifetime. In addition, we study the sensitivity of the total energy consumption and network lifetime to the amount of correlation and compression distortion constraint

    Energy Efficient Clustering in Sensor Networks with Mobile Agents

    No full text
    Wireless sensor networks with mobile access points are effective tools to collect data in a variety of environments. Low-cost and low-power sensors in the reachback operation contend for the channel to transmit their own data packets to the mobile agent. This data communication should be designed to ensure energy efficiency and low latency. In this paper, we propose a clustering scheme for wireless sensor networks with reachback mobile agents (C-SENMA) toward that goal. C-SENMA groups sensors into clusters such that nodes communicate only with the nearest clusterhead (CH) and the CH takes the task of data aggregation and communication with the mobile agent. In our scheme, CHs use a low-overhead medium access control (MAC) mechanism very similar to the conventional ALOHA to contend for the channel. Using results from random geometry theory, we analyze the clustering performance under the realistic MAC algorithm. Our analysis enables us to obtain the optimal average cluster size which minimizes energy consumption. We justify our analysis results by extensive simulations according to various clustering parameters. Furthermore, we study the effect of underlying physical layer characteristics on the amount of energy reduction achievable by the proposed clustering architecture
    corecore