4 research outputs found

    Impact des biopolymères sur les propriétés hygrothermiques du pisé : du matériau à l'échelle du bâtiment

    No full text
    International audienceThree biopolymers were tested as rammed earth (RE) stabilizers, evaluating their impact on the hygrothermal behavior from material to building scale. Hygrothermal characterization included the determination of sorption isotherm, water vapor permeability, thermal conductivity at different moisture content, and specific heat capacity. The hygrothermal data were used as input for the simulation at wholebuilding scale considering combined heat and moisture transfer. The results were evaluated by comparing heating demand, thermal comfort during summer, and the contribution of walls for passively controlling indoor humidity. The results show that hygric properties were only slightly affected by the use of stabilizers, while the thermal conductivity was 33% higher for RE stabilized with lignin, consequently increasing the heating demand at whole-building scale. All RE walls were effective in reducing temperature oscillations in summer. In the particular case of a canicular event, the indoor temperature was reduced by up to 10° compared with the outdoor value. The indoor humidity also benefited from the passive regulation by RE walls, regardless of whether a stablizer was used

    Mechanical and Microstructural Characterization of Rammed Earth Stabilized with Five Biopolymers

    No full text
    International audienceThis study aims to check the compatibility of a selection of waste and recycled biopolymers for rammed earth applications in order to replace the more common cement-based stabilization. Five formulations of stabilized rammed earth were prepared with different biopolymers: lignin sulfonate, tannin, sheep wool fibers, citrus pomace and grape-seed flour. The microstructure of the different formulations was characterized by investigating the interactions between earth and stabilizers through mercury intrusion porosimetry (MIP), nitrogen soprtion isotherm, powder X-ray diffraction (XRD) and scanning electron microscopy (SEM). The unconfined compressive strength (UCS) was also evaluated for all stabilized specimens. Three out of five biopolymers were considered suitable as rammed earth stabilizers. The use of wool increased the UCS by 6%, probably thanks to the combined effect of the length of the fibers and the roughness of their surfaces, which gives a contribution in binding clay particles higher than citrus and grape-seed flour. Lignin sulfonate and tannin increased the UCS by 38% and 13%, respectively, suggesting the additives’ ability to fill pores, coat soil grains and form aggregates; this capability is confirmed by the reduction in the specific surface area and the pore volume in the nano- and micropore zones

    Mechanical Properties of Rammed Earth Stabilized with Local Waste and Recycled Materials

    No full text
    International audienceTraditional techniques of construction using natural and locally available materials are nowadays raising the interest of architects and engineers. Clayey soil is widely present in all continents and regions, and where available it is obtained directly from the excavation of foundations, avoiding transportation costs and emissions due to the production of the binder. Moreover, raw earth is recyclable and reusable after the demolition, thanks to the absence of the firing process. The rammed earth technique is based on earth compressed into vertical formworks layer by layer to create a wall. This material owes its strength to the compaction effort and due to its manufacture procedure exhibits layers resembling the geological strata and possessing high architectural value. The hygroscopic properties of rammed earth allow natural control of the indoor humidity, keeping it in the optimal range for human health. Stabilization with lime or cement is the most common procedure to enhance the mechanical and weather resistance at once. This practice compromises the recyclability of the earth and reduces the hygroscopic properties of the material. The use of different natural stabilizers, fibers, and natural polymers by-products of the agriculture and food industry, can offer an alternative that fits the circular economy requirements. The present study analyses the mechanical strength of an Italian earth stabilized with different local waste and recycled materials that do not impair the final recyclability of the rammed earth

    Extended hygrothermal characterization of unstabilized rammed earth for modern construction

    No full text
    International audienceAlthough hygrothermal properties of rammed earth represent great potential for improving thermal comfort during hot summers, still little knowledge is available about this topic. The literature lacks complete sets of hygrothermal characteristics of rammed earth, although they are fundamental for heat and moisture transfer modeling necessary to predict earthen building performances. The present work reports the results of a large collaboration between four academic laboratories in order to obtain an extended hygrothermal characterization of rammed earth, focusing on the material used in a modern construction in Lyon, France. The aim of the article is to provide for the same kind of soil an extend characterization on a large span of relative humidity to provide complete set of material properties for heat and moisture transfer simulation. The hygrothermal measurements cover adsorption and desorption isotherm, intermediate isotherm loop, specific heat capacity, dry thermal conductivity, moisture-dependent thermal conductivity and water vapor resistance factor for a large span of relative humidity. In addition, the capillary rise test was performed to estimate the liquid transport coefficient for suction and redistribution. The results show that variations in the density of the samples have a low impact on sorption isotherm, while they have a non-negligible impact on thermal conductivity and water vapor permeability. Surprisingly, variations in the grain size distribution do not produce a significant modification in the sorption isotherm, while hysteresis slightly reduces when bigger grains are added to the soil composition. Approximation of empirical model coefficients for the determination of moisture-dependent thermal conductivity is proposed for rammed earth materials
    corecore