3 research outputs found

    Enzymatic Chemoselective Aldehyde-Ketone Cross-Couplings through the Polarity Reversal of Methylacetoin

    Get PDF
    The thiamine diphosphate (ThDP) dependent enzyme acetoin:dichlorophenolindophenol oxidoreductase (Ao:DCPIP OR) from Bacillus licheniformis was cloned and overexpressed in Escherichia coli. The recombinant enzyme shared close similarities with the acetylacetoin synthase (AAS) partially purified from Bacillus licheniformis suggesting that they could be the same enzyme. The product scope of the recombinant Ao:DCPIP OR was expanded to chiral tertiary α-hydroxy ketones through the rare aldehyde-ketone cross-carboligation reaction. Unprecedented is the use of methylacetoin as the acetyl anion donor in combination with a range of strongly to weakly activated ketones. In some cases, Ao:DCPIP OR produced the desired tertiary alcohols with stereochemistry opposite to that obtained with other ThDP-dependent enzymes. The combination of methylacetoin as acyl anion synthon and novel ThDP-dependent enzymes considerably expands the available range of C-C bond formations in asymmetric synthesis

    Extended reaction scope of thiamine diphosphate dependent cyclohexane-1,2-dione hydrolase: from C-C bond cleavage to C-C bond ligation

    No full text
    ThDP-dependent cyclohexane-1,2-dione hydrolase (CDH) catalyzes the C-C bond cleavage of cyclohexane-1,2-dione to 6-oxohexanoate, and the asymmetric benzoin condensation between benzaldehyde and pyruvate. One of the two reactivities of CDH was selectively knocked down by mutation experiments. CDH-H28A is much less able to catalyze the C-C bond formation, while the ability for C-C bond cleavage is still intact. The double variant CDH-H28A/N484A shows the opposite behavior and catalyzes the addition of pyruvate to cyclohexane-1,2-dione, resulting in the formation of a tertiary alcohol. Several acyloins of tertiary alcohols are formed with 54-94 % enantiomeric excess. In addition to pyruvate, methyl pyruvate and butane-2,3-dione are alternative donor substrates for C-C bond formation. Thus, the very rare aldehyde-ketone cross-benzoin reaction has been solved by design of an enzyme variant
    corecore