3 research outputs found

    On the Fractal Nature of Nervous Cell System

    Get PDF
    In a detailed study entitled “Morphological development of thick – tufted layer V pyramidal cells in the rat somatosensory cortex, ” an international team of scientists (Romand et al., 2011) reported a series of results pertaining to an analytical investigation of the morphological development of thick-tufted layer V pyramidal cells (also called the principal cells) in the rat somatosensory cortex. At the end of the Introduction Section, the Authors stated “all compartments of a TTL5 cell undergo different developmental changes, supporting the notion that multiple functional compartments receive different inputs an

    Fractals in the neurosciences, part I : general principles and basic neurosciences

    No full text
    The natural complexity of the brain, its hierarchical structure, and the sophisticated topological architecture of the neurons organized in micronetworks and macronetworks are all factors contributing to the limits of the application of Euclidean geometry and linear dynamics to the neurosciences. The introduction of fractal geometry for the quantitative analysis and description of the geometric complexity of natural systems has been a major paradigm shift in the last decades. Nowadays, modern neurosciences admit the prevalence of fractal properties such as self-similarity in the brain at various levels of observation, from the microscale to the macroscale, in molecular, anatomic, functional, and pathological perspectives. Fractal geometry is a mathematical model that offers a universal language for the quantitative description of neurons and glial cells as well as the brain as a whole, with its complex three-dimensional structure, in all its physiopathological spectrums. For a holistic view of fractal geometry of the brain, we review here the basic concepts of fractal analysis and its main applications to the basic neurosciences.15 page(s

    Antihypertensive treatment changes and related clinical outcomes in older hospitalized patients

    No full text
    Background: Hypertension management in older patients represents a challenge, particularly when hospitalized. Objective: The objective of this study is to investigate the determinants and related outcomes of antihypertensive drug prescription in a cohort of older hospitalized patients. Methods: A total of 5671 patients from REPOSI (a prospective multicentre observational register of older Italian in-patients from internal medicine or geriatric wards) were considered; 4377 (77.2%) were hypertensive. Minimum treatment (MT) for hypertension was defined according to the 2018 ESC guidelines [an angiotensin-converting-enzyme-inhibitor (ACE-I) or an angiotensin-receptor-blocker (ARB) with a calcium-channel-blocker (CCB) and/or a thiazide diuretic; if >80 years old, an ACE-I or ARB or CCB or thiazide diuretic]. Determinants of MT discontinuation at discharge were assessed. Study outcomes were any cause rehospitalization/all cause death, all-cause death, cardiovascular (CV) hospitalization/death, CV death, non-CV death, evaluated according to the presence of MT at discharge. Results: Hypertensive patients were older than normotensives, with a more impaired functional status, higher burden of comorbidity and polypharmacy. A total of 2233 patients were on MT at admission, 1766 were on MT at discharge. Discontinuation of MT was associated with the presence of comorbidities (lower odds for diabetes, higher odds for chronic kidney disease and dementia). An adjusted multivariable logistic regression analysis showed that MT for hypertension at discharge was associated with lower risk of all-cause death, all-cause death/hospitalization, CV death, CV death/hospitalization and non-CV death. Conclusions: Guidelines-suggested MT for hypertension at discharge is associated with a lower risk of adverse clinical outcomes. Nevertheless, changes in antihypertensive treatment still occur in a significant proportion of older hospitalized patients
    corecore