11 research outputs found

    Probing Dark Matter Substructure in Lens Galaxies

    Get PDF
    We investigate the effects of numerous dark matter subhalos in a galaxy-sized halo on the events of strong lensing, to assess their presence as expected from the cold dark matter scenario. Lens galaxies are represented by a smooth ellipsoid in an external shear field and additional cold dark matter subhalos taken from Monte Carlo realizations which accord with recent N-body results. We also consider other possible perturbers, globular clusters and luminous dwarf satellites, for comparison. We then apply the models to the particular lens systems with four images, B1422+231 and PG1115+080, for which smooth lens models are unable to reproduce both the positions of the images and their radio flux ratios or dust-free optical flux ratios simultaneously. We show that the perturbations by both globular clusters and dwarf satellites are too small to change the flux ratios, whereas cold dark matter subhalos are most likely perturbers to reproduce the observed flux ratios in a statistically significant manner. This result suggests us the presence of numerous subhalos in lens galaxies, which is consistent with the results of cosmological N-body simulations.Comment: 19 pages, including 5 figures, ApJ in pres

    The Luminosity Function of Galaxies in Compact Groups

    Get PDF
    From R-band images of 39 Hickson compact groups (HCGs), we use galaxy counts to determine a luminosity function extending to M_R=-14.0, approximately two magnitudes deeper than previous compact group luminosity functions. We find that a single Schechter function is a poor fit to the data, so we fit a composite function consisting of separate Schechter functions for the bright and faint galaxies. The bright end is best fit with M^*=-21.6 and alpha=-0.52 and the faint end with M^*=-16.1 and alpha=-1.17. The decreasing bright end slope implies a deficit of intermediate luminosity galaxies in our sample of HCGs and the faint end slope is slightly steeper than that reported for earlier HCG luminosity functions. Furthermore, luminosity functions of subsets of our sample reveal more substantial dwarf populations for groups with x-ray halos, groups with tidal dwarf candidates, and groups with a dominant elliptical or lenticular galaxy. Collectively, these results support the hypothesis that within compact groups, the initial dwarf galaxy population is replenished by "subsequent generations" formed in the tidal debris of giant galaxy interactions.Comment: 26 pages, to be published in The Astrophysical Journal, 8 greyscale plates (figures 1 and 2) can be retrieved at http://www.astro.psu.edu/users/sdh/pubs.htm

    The local space density of dwarf galaxies

    Get PDF
    We estimate the luminosity function of field galaxies over a range of ten magnitudes (-22 < M_{B_J} < -12 for H_0 = 100 km/s/Mpc) by counting the number of faint APM galaxies around Stromlo-APM redshift survey galaxies at known distance. The faint end of the luminosity function rises steeply at M_{B_J} \approx -15, implying that the space density of dwarf galaxies is at least two times larger than predicted by a Schechter function with flat faint-end slope. Such a high abundance of dwarf galaxies at low redshift can help explain the observed number counts and redshift distributions of faint galaxies without invoking exotic models for galaxy evolution.Comment: 20 pages, 5 included postscript figures, uses AAS LaTex macros. Accepted for publication in the Astrophysical Journal. Two figures and associated discussion added; results and conclusions unchange

    Satellite abundances around bright isolated galaxies

    Full text link
    We study satellite galaxy abundances in SDSS by counting photometric galaxies around isolated bright primaries. We present results as a function of the luminosity, stellar mass and colour of the satellites, and of the stellar mass and colour of the primaries. For massive primaries the luminosity and stellar mass functions of satellites are similar in shape to those of field galaxies, but for lower mass primaries they are significantly steeper. The steepening is particularly marked for the stellar mass function. Satellite abundance increases strongly with primary stellar mass, approximately in proportion to expected dark halo mass. Massive red primaries have up to a factor of 2 more satellites than blue ones of the same stellar mass. Satellite galaxies are systematically redder than field galaxies of the same stellar mass. Satellites are also systematically redder around more massive primaries. At fixed primary mass, they are redder around red primaries. We select similarly isolated galaxies from mock catalogues based on the simulations of Guo et al.(2011) and analyze them in parallel with the SDSS data. The simulation reproduces all the above trends qualitatively, except for the steepening of the satellite luminosity and stellar mass functions. Model satellites, however, are systematically redder than in the SDSS, particularly at low mass and around low-mass primaries. Simulated haloes of a given mass have satellite abundances that are independent of central galaxy colour, but red centrals tend to have lower stellar masses, reflecting earlier quenching of their star formation by feedback. This explains the correlation between satellite abundance and primary colour in the simulation. The correlation between satellite colour and primary colour arises because red centrals live in haloes which are more massive, older and more gas-rich, so that satellite quenching is more efficient.Comment: 29 pages, 24 figure

    THE DISTRIBUTION OF SATELLITE GALAXIES

    No full text
    corecore