50 research outputs found

    Breeding Biology of Steller's Eiders (Polysticta stelleri) near Barrow, Alaska, 1991–99

    Get PDF
    The breeding biology of Steller's eiders (Polysticta stelleri) near Barrow, Alaska, was studied from 1991 to 1999. The number of nests found per year ranged from 0 to 78. Mean clutch size was 5.4 (SD = 1.6, n = 51), incubation period was 24 days, and Mayfield nest success ranged from 0 to 35%. Egg survival was 24% overall (n = 451). Most nests were found on the rims of low-centered polygons near ponds with emergent vegetation. Marked broods remained within 700 m of their nest sites, and duckling survival was low. Steller's eiders nested in five of the nine years studied, corresponding with years of high lemming density and nesting pomarine jaegers (Stercorarius pomarinus) and snowy owls (Bubo scandiacus). Steller's eiders may choose to nest only in years with abundant lemmings for two reasons: first, abundant lemmings provide an alternative prey source for foxes and other predators of eiders; second, jaegers and owls defending their own nests may inadvertently provide protection to eiders nesting nearby.De 1991 Ă  1999, on a Ă©tudiĂ© la biologie de reproduction de l'eider de Steller (Polysticta stelleri) prĂšs de Barrow, en Alaska. Le nombre de nids trouvĂ©s annuellement allait de 0 Ă  78. La taille moyenne de la couvĂ©e Ă©tait de 5,4 (Ă©cart type = 1,6, n = 51), la pĂ©riode d'incubation Ă©tait de 24 jours et le succĂšs de la couvĂ©e calculĂ© selon la mĂ©thode de Mayfield allait de 0 Ă  35%. La survie des Ɠufs Ă©tait dans l'ensemble de 24% (n = 451). La plupart des nids Ă©taient situĂ©s sur le bord de polygones concaves prĂšs d'Ă©tangs avec une vĂ©gĂ©tation Ă©mergente. La progĂ©niture marquĂ©e restait dans les 700 m du site du nid, et la survie des canetons Ă©tait faible. L'eider de Steller a nichĂ© cinq ans sur les neuf de l'Ă©tude, soit ceux correspondant aux annĂ©es oĂč il y avait une forte densitĂ© de lemmings, ainsi que de nids de labbes pomarins (Stercorarius pomarinus) et de harfangs des neiges (Bubo scandiacus). Il se pourrait que l'eider de Steller choisisse de ne se reproduire que durant les annĂ©es d'abondance de lemmings pour deux raisons: la premiĂšre, c'est qu'une abondance de lemmings offre une source alternative de proies pour les renards et d'autres prĂ©dateurs de l'eider; la deuxiĂšme, c'est que les labbes pomarins et les harfangs qui dĂ©fendent leurs propres nids pourraient, involontairement, offrir une protection aux eiders qui nichent Ă  proximitĂ©

    Variation in hearing within a wild population of beluga whales (Delphinapterus leucas)

    Get PDF
    Author Posting. © The Company of Biologists, 2018. This article is posted here by permission of The Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 221 (2018): jeb171959, doi:10.1242/jeb.171959.Documenting hearing abilities is vital to understanding a species’ acoustic ecology and for predicting the impacts of increasing anthropogenic noise. Cetaceans use sound for essential biological functions such as foraging, navigation and communication; hearing is considered to be their primary sensory modality. Yet, we know little regarding the hearing of most, if not all, cetacean populations, which limits our understanding of their sensory ecology, population level variability and the potential impacts of increasing anthropogenic noise. We obtained audiograms (5.6–150 kHz) of 26 wild beluga whales to measure hearing thresholds during capture–release events in Bristol Bay, AK, USA, using auditory evoked potential methods. The goal was to establish the baseline population audiogram, incidences of hearing loss and general variability in wild beluga whales. In general, belugas showed sensitive hearing with low thresholds (<80 dB) from 16 to 100 kHz, and most individuals (76%) responded to at least 120 kHz. Despite belugas often showing sensitive hearing, thresholds were usually above or approached the low ambient noise levels measured in the area, suggesting that a quiet environment may be associated with hearing sensitivity and that hearing thresholds in the most sensitive animals may have been masked. Although this is just one wild population, the success of the method suggests that it should be applied to other populations and species to better assess potential differences. Bristol Bay beluga audiograms showed substantial (30–70 dB) variation among individuals; this variation increased at higher frequencies. Differences among individual belugas reflect that testing multiple individuals of a population is necessary to best describe maximum sensitivity and population variance. The results of this study quadruple the number of individual beluga whales for which audiograms have been conducted and provide the first auditory data for a population of healthy wild odontocetes.Project funding and field support were provided by multiple institutions, including Georgia Aquarium, the Marine Mammal Laboratory of the Alaska Fisheries Science Center (MML/AFSC), and the Woods Hole Oceanographic Institution (Arctic Research Initiative, Ocean Life Institute and Marine Mammal Center). Field work was also supported by National Marine Fisheries Service Alaska Regional Office (NMFS AKR), U.S. Fish and Wildlife Service, Bristol Bay Native Association and Bristol Bay Marine Mammal Council, Alaska SeaLife Center, Shedd Aquarium and Mystic Aquarium. Audiogram analyses were initially funded by the Office of Naval Research award number N000141210203.2019-05-0

    Baseline hearing abilities and variability in wild beluga whales (Delphinapterus leucas)

    Get PDF
    Author Posting. © The Author(s), 2014. This is the author's version of the work. It is posted here by permission of Company of Biologists for personal use, not for redistribution. The definitive version was published in Journal of Experimental Biology 217 (2014):1682-1691, doi:10.1242/​jeb.093252.While hearing is the primary sensory modality for odontocetes, there are few data addressing variation within a natural population. This work describes the hearing ranges (4-150 kHz) and sensitivities of seven apparently healthy, wild beluga whales (Delphinapterus leucas) during a population health assessment project that captured and released belugas in Bristol Bay, Alaska. The baseline hearing abilities and subsequent variations are addressed. Hearing was measured using auditory evoked potentials (AEPs). All audiograms showed a typical cetacean U-shape; substantial variation (>30 dB) was found between most and least sensitive thresholds. All animals heard well, up to at least 128 kHz. Two heard up to 150 kHz. Lowest auditory thresholds, 35-45 dB, were identified in the range 45-80 kHz. Greatest differences in hearing abilities occurred at both the high end of the auditory range and at frequencies of maximum sensitivity. In general, wild beluga hearing was quite sensitive. Hearing abilities were similar to belugas measured in zoological settings, reinforcing the comparative importance of both settings. The relative degree of variability across the wild belugas suggests that audiograms from multiple individuals are needed to properly describe the maximum sensitivity and population variance for odontocetes. Hearing measures were easily incorporated into field-based settings. This detailed examination of hearing abilities in wild Bristol Bay belugas provides a basis for a better understanding of the potential impact of anthropogenic noise on a noise-sensitive species. Such information may help design noise limiting mitigation measures that could be applied to areas heavily influenced and inhabited by endangered belugas.Project funding and field support provided by Georgia Aquarium and the National Marine Mammal Laboratory of the Alaska Fisheries Science Center (NMML/AFSC). Field work also supported by National Marine Fisheries Service Alaska Regional Office (NMFS AKR), WHOI Arctic Research Initiative, WHOI Ocean Life Institute, U.S. Fish and Wildlife Service, Bristol Bay Native Association, Alaska SeaLife Center, Shedd Aquarium and Mystic Aquarium. Audiogram analyses were funded by the Office of Naval Research award number N000141210203 (from Michael Weise).2015-05-1

    Fall and Winter Movements of Bowhead Whales (Balaena mysticetus) in the Chukchi Sea and Within a Potential Petroleum Development Area

    Get PDF
    Working with subsistence whale hunters, we tagged 19 mostly immature bowhead whales (Balaena mysticetus) with satellite-linked transmitters between May 2006 and September 2008 and documented their movements in the Chukchi Sea from late August through December. From Point Barrow, Alaska, most whales moved west through the Chukchi Sea between 71˚ and 74˚ N latitude; nine whales crossed in six to nine days. Three whales returned to Point Barrow for 13 to 33 days, two after traveling 300 km west and one after traveling ~725 km west to Wrangel Island, Russia; two then crossed the Chukchi Sea again while the other was the only whale to travel south along the Alaskan side of the Chukchi Sea. Seven whales spent from one to 21 days near Wrangel Island before moving south to northern Chukotka. Whales spent an average of 59 days following the Chukotka coast southeastward. Kernel density analysis identified Point Barrow, Wrangel Island, and the northern coast of Chukotka as areas of greater use by bowhead whales that might be important for feeding. All whales traveled through a potential petroleum development area at least once. Most whales crossed the development area in less than a week; however, one whale remained there for 30 days.De concert avec les pĂȘcheurs de baleines de subsistance, nous avons apposĂ© des transmetteurs satellitaires sur 19 baleines borĂ©ales (Balaena mysticetus) pour la plupart immatures entre les mois de mai 2006 et septembre 2008, puis nous avons tenu compte de leurs mouvements dans la mer de Tchoukotka de la fin aoĂ»t jusqu'au mois de dĂ©cembre. À partir de Point Barrow, en Alaska, la plupart des baleines se dĂ©plaçaient vers l'ouest dans la mer de Tchoukotka entre 71˚ et 74˚ N de latitude; neuf baleines ont fait la traversĂ©e en six Ă  neuf jours. Trois baleines ont regagnĂ© Point Barrow pendant 13 Ă  33 jours, dont deux aprĂšs avoir franchi 300 kilomĂštres en direction ouest et une aprĂšs avoir franchi environ 725 kilomĂštres en direction ouest jusqu'Ă  l'Ăźle Wrangel, en Russie; ensuite, deux baleines ont traversĂ© la mer de Tchoukotka de nouveau tandis que l'autre Ă©tait la seule baleine Ă  se dĂ©placer vers le sud le long du cĂŽtĂ© de la mer de Tchoukotka situĂ© en Alaska. Sept baleines ont passĂ© de un Ă  21 jours prĂšs de l'Ăźle Wrangel avant d'aller au sud du cĂŽtĂ© nord de Tchoukotka. Les baleines ont passĂ©, en moyenne, 59 jours Ă  suivre la cĂŽte de Tchoukotka vers le sud-est. L'analyse de la densitĂ© des noyaux a permis de dĂ©terminer que Point Barrow, l'Ăźle Wrangel et la cĂŽte nord de Tchoukotka sont des rĂ©gions plus grandement utilisĂ©es par les baleines borĂ©ales, rĂ©gions qui peuvent ĂȘtre importantes aux fins de l'alimentation. Toutes les baleines ont traversĂ© une zone de mise en valeur Ă©ventuelle du pĂ©trole au moins une fois. La plupart des baleines ont traversĂ© la zone de mise en valeur en moins d'une semaine. Cela dit, une baleine est restĂ©e Ă  cet endroit pendant 30 jours

    Dive Behavior of Eastern Chukchi Beluga Whales (Delphinapterus leucas), 1998–2008

    Get PDF
    We provide an exploratory description of the dive behavior of 23 beluga whales of the eastern Chukchi Sea stock, tagged with satellite-linked time and depth recorders at Point Lay, Alaska, between 1998 and 2007. Because of differences in how transmitters were parameterized, we analyzed data from tags deployed from 1998 to 2002 (n = 20 tags) and data from tags deployed in 2007 (n = 3 tags) separately. Using cluster analysis, we found three basic dive types in the 1998–2002 dataset. “Shallow” diving behavior was characterized by dives mostly 50 m in depth. “Intermediate” diving behavior was characterized by having one mode near the surface and a second mode near 250 m. “Deep” diving behavior was characterized by having one mode near the surface and a second mode more than 400 m from the surface. The average number of dives per hour ranged from 5.1 (SD = 2.1) to 9.8 (SD = 2.9) across dive types, with the fewest dives per hour in the deep diving category. In general, duration of dives ranged from 1 to 18 minutes; however, dives up to 21 minutes occurred in the deepest diving category. We found little evidence that dive behavior of the belugas in our sample varied by sex or age. In general, belugas dove more deeply in the eastern Beaufort Sea than in the western Beaufort or Chukchi Seas. The depths to which belugas most commonly dive in Barrow Canyon and along the Beaufort shelf break (200–300 m) correspond to the boundary where colder Pacific water overlies warmer Atlantic water, which is probably where Arctic cod (Boreogadus saida) are most dense. Diving depths within the Arctic Basin suggest that belugas are foraging mostly within the warm layer of Atlantic Water (~200–1000 m).Nous dressons une description exploratoire du comportement de plongĂ©e de 23 bĂ©lugas du cheptel de l’est de la mer des Tchouktches dotĂ©s de marqueurs d’enregistreurs satellitaires de profondeur temporelle Ă  Point Lay, en Alaska, entre 1998 et 2007. En raison des diffĂ©rences de paramĂ©trage des transmetteurs, nous avons analysĂ© sĂ©parĂ©ment les donnĂ©es de marqueurs dĂ©ployĂ©s de 1998 Ă  2002 (n = 20 marqueurs) et les donnĂ©es de marqueurs dĂ©ployĂ©s en 2007 (n = 3 marqueurs). GrĂące Ă  une analyse par grappes, nous avons trouvĂ© trois types de plongĂ©e fondamentaux dans l’ensemble des donnĂ©es de 1998 Ă  2002. Le comportement de plongĂ©e « en eau peu profonde » Ă©tait principalement caractĂ©risĂ© par des plongĂ©es de 50 m de profondeur. Le comportement de plongĂ©e « intermĂ©diaire » Ă©tait caractĂ©risĂ© par un mode de plongĂ©e prĂšs de la surface et un autre mode Ă  prĂšs de 250 m. Le comportement de plongĂ©e « en profondeur » Ă©tait caractĂ©risĂ© par un mode de plongĂ©e prĂšs de la surface et un deuxiĂšme mode Ă  plus de 400 m de la surface. Le nombre moyen de plongĂ©es Ă  l’heure variait de 5,1 (Ă©cart-type = 2,1) Ă  9,8 (Ă©cart-type = 2,9) pour ce qui est de tous les types de plongĂ©e, la catĂ©gorie des plongĂ©es en profondeur ayant enregistrĂ© le moins grand nombre de plongĂ©es. En gĂ©nĂ©ral, la durĂ©e des plongĂ©es durait de 1 Ă  18 minutes, mais cela dit, certaines des plongĂ©es en profondeur ont durĂ© jusqu’à 21 minutes. Nous avons trouvĂ© peu d’indices portant Ă  croire que le comportement de plongĂ©e des bĂ©lugas de notre Ă©chantillon variait en fonction du sexe ou de l’ñge. De maniĂšre gĂ©nĂ©rale, les bĂ©lugas plongeaient plus en profondeur dans l’est de la mer de Beaufort que dans l’ouest de la mer de Beaufort ou dans la mer des Tchouktches. Les profondeurs auxquelles les bĂ©lugas plongent le plus souvent dans le canyon Barrow et le long du rebord continental de Beaufort (de 200 Ă  300 m) correspondent Ă  la limite oĂč l’eau plus froide du Pacifique se superpose Ă  l’eau plus chaude de l’Atlantique, lĂ  oĂč la morue polaire (Boreogadus saida) est plus dense. Dans le bassin arctique, la profondeur des plongĂ©es suggĂšre que les bĂ©lugas s’alimentent surtout dans la couche tempĂ©rĂ©e d’eau de l’Atlantique (~200 Ă  1 000 m)

    Use of the Alaskan Beaufort Sea by Bowhead Whales (Balaena mysticetus) Tagged with Satellite Transmitters, 2006 – 18

    Get PDF
    We used satellite telemetry to examine bowhead whale movement behavior, residence times, and dive behavior&nbsp;in the Alaskan Beaufort Sea, 2006 – 18. We explored the timing and duration of use of three subregions (western, central, eastern) within the Alaskan Beaufort Sea and applied a two-state switching state-space model to infer bowhead whale behavior state as either transiting or lingering. Transiting whales made direct movements whereas lingering whales changed direction frequently and were presumably feeding. In spring, whales migrated across the Alaskan Beaufort Sea in 7.17 ± 0.41 days, primarily off the continental shelf over deep water. During the autumn migration, whales spent over twice as much time crossing the Alaskan Beaufort Sea than in spring, averaging 18.66 ± 2.30 days, spending 10.05 ± 1.22 days in the western subregion near Point Barrow. Most whales remained on the shelf during the autumn migration and frequently dove to the seafloor, where they spent 45% of their time regardless of behavioral state. Consistent dive behavior in autumn suggests that the whales were looking for food while migrating, and the identification of lingering locations likely reflects feeding. The lack of lingering locations in the eastern and central subregions suggests that prey densities are rarely sufficient to warrant whales pausing their migration for multiple days, unlike in the western subregion near Point Barrow, where bowhead whales regularly&nbsp;lingered for long periods of time.À l’aide de la tĂ©lĂ©mĂ©trie satellitaire, nous avons examinĂ© les comportements de dĂ©placement des baleines borĂ©ales,&nbsp;leurs temps de sĂ©jour et leurs comportements de plongĂ©e dans les eaux alaskiennes de la mer de Beaufort entre 2006 et 2018. Nous avons explorĂ© le moment et la durĂ©e d’utilisation de trois sous-rĂ©gions (ouest, centre et est) des eaux alaskiennes de la mer de Beaufort et appliquĂ© un modĂšle Ă  changement binaire espace-Ă©tat afin de dĂ©duire l’état du comportement des baleines borĂ©ales comme Ă©tant soit en mode transit, soit en mode flĂąnerie. Les baleines en mode transit se dĂ©plaçaient de maniĂšre directe, tandis que celles en mode flĂąnerie changeaient souvent de direction et Ă©taient probablement en train de se nourrir. Au printemps, les baleines migraient dans les eaux alaskiennes de la mer de Beaufort en 7,17 ± 0,41 jours, principalement au large du plateau continental, dans les profondeurs. Durant la migration automnale, les baleines passaient plus de deux fois plus de temps Ă  traverser les eaux alaskiennes de la mer de Beaufort qu’au printemps, en moyenne 18,66 ± 2,30 jours, passant 10,05 ± 1,22 jours dans la sous-rĂ©gion de l’ouest, prĂšs de Point Barrow. Pendant la migration automnale, la plupart des baleines restaient dans le plateau continental et plongeaient souvent jusqu’au plancher ocĂ©anique, oĂč elles passaient 45 % de leur temps, peu importe leur Ă©tat de comportement. À l’automne, le comportement de plongĂ©e rĂ©gulier suggĂšre que les baleines Ă©taient Ă  la recherche de nourriture pendant leur migration, et les lieux oĂč elles flĂąnaient Ă©taient vraisemblablement indicateurs d’un mode d’alimentation. L’absence de lieux de flĂąnerie dans les sous-rĂ©gions de l’est et du centre suggĂšre que la densitĂ© des proies est rarement suffisante pour que les baleines justifient d’interrompre leur migration pendant plusieurs jours, contrairement Ă  la sous-rĂ©gion de l’ouest, prĂšs de Point Barrow, oĂč les baleines borĂ©ales flĂąnaient rĂ©guliĂšrement pendant de longues pĂ©riodes

    Determination of polar bear (Ursus maritimus) individual genotype and sex based on DNA extracted from paw-prints in snow

    Get PDF
    Polar bears rely upon sea ice to hunt, travel, and reproduce. Declining sea ice extent and duration has led polar bears to be designated as “threatened” (ESA). Population monitoring is vital to polar bear conservation; but recently, poor sea ice has made traditional aircraft-based methods less viable. These methods largely rely upon the capture and handling of polar bears, and have been criticized over animal welfare concerns. Monitoring polar bears via DNA sampling is a promising option. One common method utilizes biopsy darts delivered from a helicopter to collect DNA, a method that faces similar ice associated challenges to those described above. However, epidermal cells shed from the foot pads of a polar bear into its paw-prints in snow are a source of “environmental DNA” (e-DNA) that can be collected non-invasively on the sea ice or on land for potential use in population monitoring. Mitochondrial DNA (mt-DNA) is used to assess whether polar bear DNA is present within a snow sample, and nuclear DNA (n-DNA) can identify individuals and their sex. The goal of this investigation was to assess the viability of using e-DNA collected from paw-prints in the snow to identify individual polar bears and their sex. Snow was sampled from 13 polar bear trails (10 paw-prints per trail) on the sea ice in the Chukchi and Beaufort seas along the North Slope of Alaska. Species verification was based on a mt-DNA PCR fragment analysis test. Identification of individuals was accomplished by amplifying a multiplex of seven n-DNA microsatellite loci, and sex was determined by the amelogenin gene sex ID marker. Six of the 13 bear trails sampled (46%) yielded consensus genotypes for five unique males and one female. To our knowledge, this is the first time that polar bears have been individually identified by genotype and sex using e-DNA collected from snow. This method is non-invasive, could be integrated into genetic mark-recapture sampling designs, and addresses some of the current challenges arising from poor sea ice conditions. It also can involve, engage, and empower Indigenous communities in the Arctic, which are greatly affected by polar bear management decisions

    Best practice guidelines for cetacean tagging

    Get PDF
    Animal-borne electronic instruments (tags) are valuable tools for collecting information on cetacean physiology, behaviour and ecology, and for enhancing conservation and management policies for cetacean populations. Tags allow researchers to track the movement patterns, habitat use andother aspects of the behaviour of animals that are otherwise difficult to observe. They can even be used to monitor the physiology of a tagged animal within its changing environment. Such tags are ideal for identifying and predicting responses to anthropogenic threats, thus facilitating the development of robust mitigation measures. With the increasing need for data best provided by tagging and the increasing availability of tags, such research is becoming more common. Tagging can, however, pose risks to the health and welfare of cetaceans and to personnel involved in tagging operations. Here we provide ‘best practice’ recommendations for cetacean tag design, deployment and follow-up assessment of tagged individuals, compiled by biologists and veterinarians with significant experience in cetacean tagging. This paper is intended to serve as a resource to assist tag users, veterinarians, ethics committees and regulatory agency staff in the implementation of high standards of practice, and to promote the training of specialists in this area. Standardised terminology for describing tag design and illustrations of tag types and attachment sites are provided, along with protocols for tag testing and deployment (both remote and through capture-release), including training of operators. The recommendations emphasise the importance of ensuring that tagging is ethically and scientifically justified for a particular project and that tagging only be used to address bona fide research or conservation questions that are best addressed with tagging, as supported by an exploration of alternative methods. Recommendations are provided for minimising effects on individual animals (e.g. through careful selection of the individual, tag design and implant sterilisation) and for improving knowledge of tagging effects on cetaceans through increased post-tagging monitoring.Publisher PDFPeer reviewe
    corecore