20 research outputs found

    Safe and Efficient Silencing with a Pol II, but not a Pol lII, Promoter Expressing an Artificial miRNA Targeting Human Huntingtin

    Get PDF
    Huntington\u27s disease is a devastating, incurable neurodegenerative disease affecting up to 12 per 100,000 patients worldwide. The disease is caused by a mutation in the Huntingtin (Htt) gene. There is interest in reducing mutant Huntingtin by targeting it at the mRNA level, but the maximum tolerable dose and long-term effects of such a treatment are unknown. Using a self-complementary AAV9 vector, we delivered a mir-155-based artificial miRNA under the control of the chicken β-actin or human U6 promoter. In mouse brain, the artificial miRNA reduced the human huntingtin mRNA by 50%. The U6, but not the CβA promoter, produced the artificial miRNA at supraphysiologic levels. Embedding the antisense strand in a U6-mir-30 scaffold reduced expression of the antisense strand but increased the sense strand. In mice treated with scAAV9-U6-mir-155-HTT or scAAV9-CβA-mir-155-HTT, activated microglia were present around the injection site 1 month post-injection. Six months post-injection, mice treated with scAAV9-CβA-mir-155-HTT were indistinguishable from controls. Those that received scAAV9-U6-mir-155-HTT showed behavioral abnormalities and striatal damage. In conclusion, miRNA backbone and promoter can be used together to modulate expression levels and strand selection of artificial miRNAs, and in brain, the CβA promoter can provide an effective and safe dose of a human huntingtin miRNA

    Allele-Selective Suppression of Mutant Huntingtin in Primary Human Blood Cells

    Get PDF
    Post-transcriptional gene silencing is a promising therapy for the monogenic, autosomal dominant, Huntington\u27s disease (HD). However, wild-type huntingtin (HTT) has important cellular functions, so the ideal strategy would selectively lower mutant HTT while sparing wild-type. HD patients were genotyped for heterozygosity at three SNP sites, before phasing each SNP allele to wild-type or mutant HTT. Primary ex vivo myeloid cells were isolated from heterozygous patients and transfected with SNP-targeted siRNA, using glucan particles taken up by phagocytosis. Highly selective mRNA knockdown was achieved when targeting each allele of rs362331 in exon 50 of the HTT transcript; this selectivity was also present on protein studies. However, similar selectivity was not observed when targeting rs362273 or rs362307. Furthermore, HD myeloid cells are hyper-reactive compared to control. Allele-selective suppression of either wild-type or mutant HTT produced a significant, equivalent reduction in the cytokine response of HD myeloid cells to LPS, suggesting that wild-type HTT has a novel immune function. We demonstrate a sequential therapeutic process comprising genotyping and mutant HTT-linkage of SNPs, followed by personalised allele-selective suppression in a small patient cohort. We further show that allele-selectivity in ex vivo patient cells is highly SNP-dependent, with implications for clinical trial target selection

    Designing siRNA That Distinguish between Genes That Differ by a Single Nucleotide

    Get PDF
    Small interfering RNAs (siRNAs), the guides that direct RNA interference (RNAi), provide a powerful tool to reduce the expression of a single gene in human cells. Ideally, dominant, gain-of-function human diseases could be treated using siRNAs that specifically silence the mutant disease allele, while leaving expression of the wild-type allele unperturbed. Previous reports suggest that siRNAs can be designed with single nucleotide specificity, but no rational basis for the design of siRNAs with single nucleotide discrimination has been proposed. We systematically identified siRNAs that discriminate between the wild-type and mutant alleles of two disease genes: the human Cu, Zn superoxide dismutase (SOD1) gene, which contributes to the progression of hereditary amyotrophic lateral sclerosis through the gain of a toxic property, and the huntingtin (HTT) gene, which causes Huntington disease when its CAG-repeat region expands beyond approximately 35 repeats. Using cell-free RNAi reactions in Drosophila embryo lysate and reporter assays and microarray analysis of off-target effects in cultured human cells, we identified positions within an siRNA that are most sensitive to mismatches. We also show that purine:purine mismatches imbue an siRNA with greater discriminatory power than other types of base mismatches. siRNAs in which either a G:U wobble or a mismatch is located in the “seed” sequence, the specialized siRNA guide region responsible for target binding, displayed lower levels of selectivity than those in which the mismatch was located 3′ to the seed; this region of an siRNA is critical for target cleavage but not siRNA binding. Our data suggest that siRNAs can be designed to discriminate between the wild-type and mutant alleles of many genes that differ by just a single nucleotide

    Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells

    No full text
    BACKGROUND: Oxalate, a common constituent of kidney stones, is cytotoxic for renal epithelial cells. Although the exact mechanism of oxalate-induced cell death remains unclear, studies in various cell types, including renal epithelial cells, have implicated phospholipase A2 (PLA2) as a prominent mediator of cellular injury. Thus, these studies examined the role of PLA2 in the cytotoxic effects of oxalate. METHODS: The release of [3H]-arachidonic acid (AA) or [3H]-oleic acid (OA) from prelabeled Madin-Darby canine kidney (MDCK) cells was measured as an index for PLA2 activity. The cell viability was assessed by the exclusion of ethidium homodimer-1. RESULTS: Oxalate exposure (175 to 550 microM free) increased the release of [3H]-AA in MDCK cells but had no effect on the release of [3H]-OA. Oxalate-induced [3H]-AA release was abolished by arachidonyl trifluoromethyl ketone (AACOCF3), a selective inhibitor of cytosolic PLA2 (cPLA2), but was not affected by selective inhibitors of secretory PLA2 and calcium-independent PLA2. The [3H]-AA release could be demonstrated within 15 minutes after exposure to oxalate, which is considerably earlier than the observed changes in cell viability. Furthermore, AACOCF3 significantly reduced oxalate toxicity in MDCK cells. CONCLUSIONS: Oxalate increases AA release from MDCK cells by a process involving cPLA2. In addition, based on the evidence obtained using a selective inhibitor of this isoform, it would appear that the activity of this enzyme is responsible, at least in part, for the cytotoxic effects of oxalate. The finding that oxalate can trigger a known lipid-signaling pathway may provide new insight into the initial events in the pathogenesis of nephrolithiasis

    Does the Mutant CAG Expansion in Huntingtin mRNA Interfere with Exonucleolytic Cleavage of its First Exon

    No full text
    BACKGROUND: Silencing mutant huntingtin mRNA by RNA interference (RNAi) is a therapeutic strategy for Huntington\u27s disease. RNAi induces specific endonucleolytic cleavage of the target HTT mRNA, followed by exonucleolytic processing of the cleaved mRNA fragments. OBJECTIVES: We investigated the clearance of huntingtin mRNA cleavage products following RNAi, to find if particular huntingtin mRNA sequences persist. We especially wanted to find out if the expanded CAG increased production of a toxic mRNA species by impeding degradation of human mutant huntingtin exon 1 mRNA. METHODS: Mice expressing the human mutant HTT transgene with 128 CAG repeats (YAC128 mice) were injected in the striatum with self-complementary AAV9 vectors carrying a miRNA targeting exon 48 of huntingtin mRNA (scAAV-U6-miRNA-HTT-GFP). Transgenic huntingtin mRNA levels were measured in striatal lysates after two weeks. For qPCR, we used species specific primer-probe combinations that together spanned 6 positions along the open reading frame and untranslated regions of the human huntingtin mRNA. Knockdown was also measured in the liver following tail vein injection. RESULTS: Two weeks after intrastriatal administration of scAAV9-U6-miRNA-HTT-GFP, we measured transgenic mutant huntingtin in striatum using probes targeting six different sites along the huntingtin mRNA. Real time PCR showed a reduction of 29% to 36% in human HTT. There was no significant difference in knockdown measured at any of the six sites, including exon 1. In liver, we observed a more pronounced HTT mRNA knockdown of 70% to 76% relative to the untreated mice, and there were also no significant differences among sites. CONCLUSIONS: Our results demonstrate that degradation is equally distributed across the human mutant huntingtin mRNA following RNAi-induced cleavage

    Phospholipase A2 mediates immediate early genes in cultured renal epithelial cells: possible role of lysophospholipid

    Get PDF
    BACKGROUND: Exposure to high levels of oxalate induces oxidant stress in renal epithelial cells and produces diverse changes in cell function, ranging from cell death to cellular adaptation, as evidenced by increased DNA synthesis, cellular proliferation, and induction of genes associated with remodeling and repair. These studies focused on cellular adaptation to this oxidant stress, examining the manner by which oxalate exposure leads to increased expression of immediate early genes (IEGs). Specifically, our studies assessed the possibility that oxalate-induced changes in IEG expression are mediated by phospholipase A2 (PLA2), a common pathway in cellular stress responses. METHODS: Madin-Darby canine kidney (MDCK) cells were exposed to oxalate in the presence or absence of PLA2 inhibitors: mepacrine and arachidonyl trifluoromethyl ketone (AACOCF3). Expression of IEG (c-jun, egr-1, and c-myc) mRNA was assessed by Northern blot analysis. PLA2 activity was determined by measuring the release of [3H]arachidonic acid (AA) from prelabeled cells. RESULTS: Oxalate exposure (1 to 1.5 mmol/L) induced time- and concentration-dependent increases in IEG mRNA. Treatment with mepacrine resulted in a 75 to 113% reduction of oxalate-induced c-jun, egr-1, and c-myc mRNA, while AACOCF3 caused a 41 to 46% reduction of oxalate-induced c-jun and egr-1 mRNA. Of the two major byproducts of PLA2, only lysophosphatidylcholine (20 micromol/L) increased c-jun and egr-1 mRNA. In contrast, AA (25 micromol/L) attenuated the oxalate-induced increase in c-jun and egr-1 mRNA, presumably by inhibiting PLA2 activity. CONCLUSIONS: These findings suggest that PLA2 plays a major role in oxalate-induced IEG expression in renal epithelial cells and that lysophospholipids might be a possible lipid mediator in this pathway

    Oxalate toxicity in LLC-PK1 cells: Role of free radicals

    Get PDF
    Oxalate toxicity in LLC-PK1 cells: Role of free radicals. Oxalate, the most common constituent of kidney stones, is an end product of metabolism that is excreted by the kidney. During excretion, oxalate is transported by a variety of transport systems and accumulates in renal tubular cells. This process has been considered benign; however, recent studies on LLC-PK1 cells suggested that high concentrations of oxalate are toxic, inducing morphological alterations, increases in membrane permeability to vital dyes and loss of cells from the monolayer cultures. The present studies examined the basis for oxalate toxicity, focusing on the possibility that oxalate exposure might increase the production/availability of free radicals in LLC-PK1 cells. Free radical production was monitored in two ways, by monitoring the reduction of nitroblue tetrazolium to a blue reaction product and by following the conversion of dihydrorhodamine 123 (DHR) to its fluorescent derivative, rhodamine 123. Such studies demonstrated that oxalate induces a concentration-dependent increase in dye conversion by a process that is sensitive to free radical scavengers. Specifically, addition of catalase or superoxide dismutase blocked the oxalate-induced changes in dye fluorescence/absorbance. Addition of these free radical scavengers also prevented the oxalate-induced loss of membrane integrity in LLC-PK1 cells. Thus it seems likely that free radicals are responsible for oxalate toxicity. The levels of oxalate that induced toxicity in LLC-PK1 cells (350 µm) was only slightly higher than would be expected to occur in the renal cortex. These considerations suggest that hyperoxaluria may contribute to the progression of renal injury in several forms of renal disease

    Linking SNPs to CAG repeat length in Huntington\u27s disease patients

    No full text
    Allele-specific silencing using small interfering RNAs targeting heterozygous single-nucleotide polymorphisms (SNPs) is a promising therapy for human trinucleotide repeat diseases such as Huntington\u27s disease. Linking SNP identities to the two HTT alleles, normal and disease-causing, is a prerequisite for allele-specific RNA interference. Here we describe a method, SNP linkage by circularization (SLiC), to identify linkage between CAG repeat length and nucleotide identity of heterozygous SNPs using Huntington\u27s disease patient peripheral blood samples
    corecore