13 research outputs found

    Recent Advances in the Molecular Characterization of Circulating Tumor Cells

    Get PDF
    Although circulating tumor cells (CTCs) were first observed over a century ago, lack of sensitive methodology precluded detailed study of these cells until recently. However, technological advances have now facilitated the identification, enumeration, and characterization of CTCs using a variety of methods. The majority of evidence supporting the use of CTCs in clinical decision-making has been related to enumeration using the CellSearch((R)) system and correlation with prognosis. Growing evidence also suggests that CTC monitoring can provide an early indication of patient treatment response based on comparison of CTC levels before and after therapy. However, perhaps the greatest potential that CTCs hold for oncology lies at the level of molecular characterization. Clinical treatment decisions may be more effective if they are based on molecular characteristics of metastatic cells rather than on those of the primary tumor alone. Molecular characterization of CTCs (which can be repeatedly isolated in a minimally invasive fashion) provides the opportunity for a. real-time liquid biopsy that allows assessment of genetic drift, investigation of molecular disease evolution, and identification of actionable genomic characteristics. This review focuses on recent advances in this area, including approaches involving immunophenotyping, fluorescence in situ hybridization (FISH), multiplex RT-PCR, microarray, and genomic sequencing

    Circulating Tumor Cell Analysis in Preclinical Mouse Models of Metastasis

    Get PDF
    The majority of cancer deaths occur because of metastasis since current therapies are largely non-curative in the metastatic setting. The use of in vivo preclinical mouse models for assessing metastasis is, therefore, critical for developing effective new cancer biomarkers and therapies. Although a number of quantitative tools have been previously developed to study in vivo metastasis, the detection and quantification of rare metastatic events has remained challenging. This review will discuss the use of circulating tumor cell (CTC) analysis as an effective means of tracking and characterizing metastatic disease progression in preclinical mouse models of breast and prostate cancer and the resulting lessons learned about CTC and metastasis biology. We will also discuss how the use of clinically-relevant CTC technologies such as the CellSearch((R)) and Parsortix platforms for preclinical CTC studies can serve to enhance the study of cancer biology, new biomarkers, and novel therapies from the bench to the bedside

    Adaptation of Semiautomated Circulating Tumor Cell (CTC) Assays for Clinical and Preclinical Research Applications

    Get PDF
    The majority of cancer-related deaths occur subsequent to the development of metastatic disease. This highly lethal disease stage is associated with the presence of circulating tumor cells (CTCs). These rare cells have been demonstrated to be of clinical significance in metastatic breast, prostate, and colorectal cancers. The current gold standard in clinical CTC detection and enumeration is the FDA-cleared CellSearch system (CSS). This manuscript outlines the standard protocol utilized by this platform as well as two additional adapted protocols that describe the detailed process of user-defined marker optimization for protein characterization of patient CTCs and a comparable protocol for CTC capture in very low volumes of blood, using standard CSS reagents, for studying in vivo preclinical mouse models of metastasis. In addition, differences in CTC quality between healthy donor blood spiked with cells from tissue culture versus patient blood samples are highlighted. Finally, several commonly discrepant items that can lead to CTC misclassification errors are outlined. Taken together, these protocols will provide a useful resource for users of this platform interested in preclinical and clinical research pertaining to metastasis and CTCs

    Epithelial-to-mesenchymal transition leads to disease-stage differences in circulating tumor cell detection and metastasis in pre-clinical models of prostate cancer

    Get PDF
    Metastasis is the cause of most prostate cancer (PCa) deaths and has been associated with circulating tumor cells (CTCs). The presence of \u3e= 5 CTCs/7.5mL of blood is a poor prognosis indicator in metastatic PCa when assessed by the CellSearch (R) system, the gold standard clinical platform. However, similar to 35% of metastatic PCa patients assessed by CellSearch (R) have undetectable CTCs. We hypothesize that this is due to epithelial-to-mesenchymal transition (EMT) and subsequent loss of necessary CTC detection markers, with important implications for PCa metastasis. Two pre-clinical assays were developed to assess human CTCs in xenograft models; one comparable to CellSearch (R) (EpCAM-based) and one detecting CTCs semi-independent of EMT status via combined staining with EpCAM/HLA (human leukocyte antigen). In vivo differences in CTC generation, kinetics, metastasis and EMT status were determined using 4 PCa models with progressive epithelial (LNCaP, LNCaP-C42B) to mesenchymal (PC-3, PC-3M) phenotypes. Assay validation demonstrated that the CellSearch (R)-based assay failed to detect a significant number (similar to 40-50%) of mesenchymal CTCs. In vivo, PCa with an increasingly mesenchymal phenotype shed greater numbers of CTCs more quickly and with greater metastatic capacity than PCa with an epithelial phenotype. Notably, the CellSearch (R)-based assay captured the majority of CTCs shed during early-stage disease in vivo, and only after establishment of metastases were a significant number of undetectable CTCs present. This study provides important insight into the influence of EMT on CTC generation and subsequent metastasis, and highlights that novel technologies aimed at capturing mesenchymal CTCs may only be useful in the setting of advanced metastatic disease

    Circulating Tumor Cells and Implications of the Epithelial-to-Mesenchymal Transition

    No full text
    The majority of cancer-related deaths result from metastasis, the process by which cancer cells escape the primary tumor site and enter into the blood circulation in order to disseminate to secondary locations throughout the body. Tumor cells found within the circulation are referred to as circulating tumor cells (CTCs), and their detection and enumeration correlate with poor prognosis. The epithelial-to-mesenchymal transition (EMT) is a dynamic process that imparts epithelial cells with mesenchymal-like properties, thus facilitating tumor cell dissemination and contributing to metastasis. However, EMT also results in the downregulation of various epithelial proteins typically utilized by CTC technologies for enrichment and detection of these rare cells, resulting in reduced detection of some CTCs, potentially those with a more metastatic phenotype. In addition to the current clinical role of CTCs as a prognostic biomarker, they also have potential as a predictive biomarker via CTC characterization. However, CTC characterization is complicated by the unknown biological significance of CTCs possessing an EMT-like phenotype, and the ability to capture and understand this CTC subpopulation is an essential step in the utilization of CTCs for patient management. This chapter will review the process of EMT and its contribution to metastasis; discusses current and future clinical applications of CTCs; and describes both traditional and novel methods for CTC enrichment, detection, and characterization with a specific focus on CTCs with an EMT phenotype

    Reduced Zeb1 Expression in Prostate Cancer Cells Leads to an Aggressive Partial-EMT Phenotype Associated with Altered Global Methylation Patterns

    No full text
    Prostate cancer is the most common cancer in American men and the second leading cause of cancer-related death. Most of these deaths are associated with metastasis, a process involving the epithelial-to-mesenchymal (EMT) transition. Furthermore, growing evidence suggests that partial-EMT (p-EMT) may lead to more aggressive disease than complete EMT. In this study, the EMT-inducing transcription factor Zeb1 was knocked down in mesenchymal PC-3 prostate cancer cells (Zeb1KD) and resulting changes in cellular phenotype were assessed using protein and RNA analysis, invasion and migration assays, cell morphology assays, and DNA methylation chip analysis. Inducible knockdown of Zeb1 resulted in a p-EMT phenotype including co-expression of epithelial and mesenchymal markers, a mixed epithelial/mesenchymal morphology, increased invasion and migration, and enhanced expression of p-EMT markers relative to PC-3 mesenchymal controls (p ≤ 0.05). Treatment of Zeb1KD cells with the global de-methylating drug 5-azacytidine (5-aza) mitigated the observed aggressive p-EMT phenotype (p ≤ 0.05). DNA methylation chip analysis revealed 10 potential targets for identifying and/or targeting aggressive p-EMT prostate cancer in the future. These findings provide a framework to enhance prognostic and/or therapeutic options for aggressive prostate cancer in the future by identifying new p-EMT biomarkers to classify patients with aggressive disease who may benefit from 5-aza treatment

    Triple-Negative Primary Breast Tumors Induce Supportive Premetastatic Changes in the Extracellular Matrix and Soluble Components of the Lung Microenvironment

    No full text
    The lung is one of the deadliest sites of breast cancer metastasis, particularly in patients with triple-negative (TN) disease. We hypothesized that the presence of a TN primary breast tumor induces changes in the extracellular matrix (ECM) and soluble components of the lung microenvironment that support metastatic behavior. SUM159 (TN) and MCF7 (luminal A) breast cancer cells were injected into mice, and primary breast tumors were established prior to assessing metastatic niche changes. We observed increased CD117+ hematopoietic progenitor cells in the bone marrow of SUM159 mice versus MCF7 or control mice (p < 0.05). Relative to mice bearing MCF7 tumors and non-tumor controls, mice bearing SUM159 tumors demonstrated enhanced expression of ECM proteins in the lung (fibronectin, tenascin-c and periostin), with similar changes observed in lung fibroblasts treated with extracellular vesicles (EVs) from TN breast cancer cells (p < 0.05). Exposure to lung-conditioned media (LCM) from SUM159 tumor-bearing mice resulted in increased migration/proliferation of both SUM159 and MCF7 cells relative to the control (p < 0.05). In contrast, LCM from MCF-7 tumor-bearing mice had no such effect. LCM from SUM159 tumor-bearing mice contained 16 unique proteins relative to other LCM conditions, including the metastasis-associated proteins CCL7, FGFR4, GM-CSF, MMP3, thrombospondin-1 and VEGF. These findings suggest for the first time that the TN breast cancer molecular subtype may be an important determinant of premetastatic changes to both the ECM and soluble components of the lung, potentially mediated via breast cancer-derived EVs.Pharmaceutical Sciences, Faculty ofNon UBCReviewedFacult

    Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation

    No full text
    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes.Medicine, Faculty ofOther UBCNon UBCUrologic Sciences, Department ofReviewedFacult

    Circulating Tumor Cells (CTC) and Cell-Free DNA (cfDNA) Workshop 2016: Scientific Opportunities and Logistics for Cancer Clinical Trial Incorporation

    No full text
    Despite the identification of circulating tumor cells (CTCs) and cell-free DNA (cfDNA) as potential blood-based biomarkers capable of providing prognostic and predictive information in cancer, they have not been incorporated into routine clinical practice. This resistance is due in part to technological limitations hampering CTC and cfDNA analysis, as well as a limited understanding of precisely how to interpret emergent biomarkers across various disease stages and tumor types. In recognition of these challenges, a group of researchers and clinicians focused on blood-based biomarker development met at the Canadian Cancer Trials Group (CCTG) Spring Meeting in Toronto, Canada on 29 April 2016 for a workshop discussing novel CTC/cfDNA technologies, interpretation of data obtained from CTCs versus cfDNA, challenges regarding disease evolution and heterogeneity, and logistical considerations for incorporation of CTCs/cfDNA into clinical trials, and ultimately into routine clinical use. The objectives of this workshop included discussion of the current barriers to clinical implementation and recent progress made in the field, as well as fueling meaningful collaborations and partnerships between researchers and clinicians. We anticipate that the considerations highlighted at this workshop will lead to advances in both basic and translational research and will ultimately impact patient management strategies and patient outcomes
    corecore