60 research outputs found

    Solar wind current sheets and deHoffmann-Teller analysis. First results from Solar Orbiter's DC electric field measurements

    Get PDF
    Context: Solar Orbiter was launched on 10 February 2020 with the purpose of investigating solar and heliospheric physics using a payload of instruments designed for both remote and in situ studies. Similar to the recently launched Parker Solar Probe, and unlike earlier missions, Solar Orbiter carries instruments designed to measure low-frequency DC electric fields. Aims: In this paper, we assess the quality of the low-frequency DC electric field measured by the Radio and Plasma Waves instrument (RPW) on Solar Orbiter. In particular, we investigate the possibility of using Solar Orbiter’s DC electric and magnetic field data to estimate the solar wind speed. Methods: We used a deHoffmann-Teller (HT) analysis, based on measurements of the electric and magnetic fields, to find the velocity of solar wind current sheets, which minimises a single component of the electric field. By comparing the HT velocity to the proton velocity measured by the Proton and Alpha particle Sensor (PAS), we have developed a simple model for the effective antenna length, Leff of the E-field probes. We then used the HT method to estimate the speed of the solar wind. Results: Using the HT method, we find that the observed variations in Ey are often in excellent agreement with the variations in the magnetic field. The magnitude of Ey , however, is uncertain due to the fact that the Leff depends on the plasma environment. Here, we derive an empirical model relating Leff to the Debye length, which we can use to improve the estimate of Ey and, consequently, the estimated solar wind speed. Conclusions: The low-frequency electric field provided by RPW is of high quality. Using the deHoffmann-Teller analysis, Solar Orbiter’s magnetic and electric field measurements can be used to estimate the solar wind speed when plasma data are unavailable

    First-year ion-acoustic wave observations in the solar wind by the RPW/TDS instrument on board Solar Orbiter

    Get PDF
    Context. Electric field measurements of the Time Domain Sampler (TDS) receiver, part of the Radio and Plasma Waves (RPW) instrument on board Solar Orbiter, often exhibit very intense broadband wave emissions at frequencies below 20 kHz in the spacecraft frame. During the first year of the mission, the RPW/TDS instrument was operating from the first perihelion in mid-June 2020 and through the first flyby of Venus in late December 2020. Aims. In this paper, we present a year-long study of electrostatic fluctuations observed in the solar wind at an interval of heliocentric distances from 0.5 to 1 AU. The RPW/TDS observations provide a nearly continuous data set for a statistical study of intense waves below the local plasma frequency. Methods. The on-board and continuously collected and processed properties of waveform snapshots allow for the mapping plasma waves at frequencies between 200 Hz and 20 kHz. We used the triggered waveform snapshots and a Doppler-shifted solution of the dispersion relation for wave mode identification in order to carry out a detailed spectral and polarization analysis. Results. Electrostatic ion-acoustic waves are the most common wave emissions observed between the local electron and proton plasma frequency by the TDS receiver during the first year of the mission. The occurrence rate of ion-acoustic waves peaks around perihelion at distances of 0.5 AU and decreases with increasing distances, with only a few waves detected per day at 0.9 AU. Waves are more likely to be observed when the local proton moments and magnetic field are highly variable. A more detailed analysis of more than 10000 triggered waveform snapshots shows the mean wave frequency at about 3 kHz and wave amplitude about 2.5 mV/m. The wave amplitude varies as R−1.38 with the heliocentric distance. The relative phase distribution between two components of the E-field projected in the Y-Z Spacecraft Reference Frame (SRF) plane shows a mostly linear wave polarization. Electric field fluctuations are closely aligned with the directions of the ambient field lines. Only a small number (3%) of ion-acoustic waves are observed at larger magnetic discontinuities

    Swift heavy ion-induced silicon dioxide nanostructuration: experimental observation of velocity effect

    No full text
    Thanks to atomic force microscope observation of swift heavy ion-induced structural modifications of SiO2-Si layer, we show that for a given linear energy transfer value the radial atomic modification along the ion track depends on the ion velocity regime

    Physical model for the low-dose-rate effect in bipolar devices

    No full text
    International audienceA physical model of the dose-rate effect in bipolar junction transistors is proposed, based on competition between trapping and recombination of radiation-induced carriers in the oxide. The initial recombination of the carriers is considered in this model, taking into account the temperature effect. The general trends obtained with this model are in very good agreement with experimental data. It is also shown that the dose rate effect depends significantly on oxide qualit

    Analysis of Total-Dose Response of Bipolar Voltage Comparator Combining experiments and design data

    No full text
    International audienceA contribution to the understanding of total dose degradation using both AC small signal analysis and DC analysis in linear bipolar circuits is proposed. The reasoning is illustrated step by step on the basis of experimental results obtained on the LM 139. It is shown that the input stage is mostly responsible for the degradation up to 20 krad. Above 20 krad, the total degradation is due to a combination of the input and the output stage degradation. The amplifier stage does not play a significant role in the circuit deeradatio
    corecore