4,357 research outputs found
Entropy-expansiveness for partially hyperbolic diffeomorphisms
We show that diffeomorphisms with a dominated splitting of the form
, where is a nonhyperbolic central bundle that
splits in a dominated way into 1-dimensional subbundles, are entropy-expansive.
In particular, they have a principal symbolic extension and equilibrium states.Comment: 15 pages, 1 figur
Optimal scan planning for surveying large sites with static and mobile mapping systems
Since the last two decades, the use of laser scanners for generating accurate and dense 3D models has been rapidly growing in multiple disciplines. The reliance on human-expertise to perform an efficient scanning in terms of completeness and quality encouraged the researchers to develop strategies for carrying out an optimized and automated scan planning. Nevertheless, due to the predominant use of static terrestrial laser scanners (TLS), the most of developed methods have been focused on scan optimization by fixing standpoints on basis of static scanning. The increasing use of portable mobile laser scanning systems (MLS) enables faster non-stop acquisition which demands the planning of optimal scan trajectories. Therefore, a novel method addressing the absence of dynamic scan planning is proposed considering specific MLS constraints such as maximum acquisition time or closed-loops requirement. First, an initial analysis is carried out to determinate key-positions to reach during data acquisition. From these positions a navigable graph is generated to compute routes satisfying specific MLS constraints by a three-step process. This starts by estimating the number of routes necessary to subsequently carry out a coarse graph partition based on Kmedoids clustering. Next, a balancing algorithm was implemented to compute a balanced graph partition by node exchanging. Finally, partitions are extended by adding key nodes from their adjacent ones in order to provide a desirable overlapping between scans. The method was tested by simulating three laser scanner configurations in four indoor and outdoor real case studies. The acquisition quality of the computed scan planning was evaluated in terms of 3D completeness and point cloud density with the simulator Helios++
Stereolithography (SLA) 3D printing of a bladder device for intravesical drug delivery
Intravesical instillation therapy is an alternative approach to oral medications for the treatment of severe bladder diseases, offering high drug concentrations at the site of action while minimising systemic side effects. However, therapeutic efficacy is often limited because of the short residence time of the drug in the bladder and the need for repeated instillations. This study reports, for the first time, the use of stereolithography (SLA) 3D printing to manufacture novel indwelling bladder devices using an elastic polymer to achieve extended and localised delivery of lidocaine hydrochloride. The devices were designed to be inserted into and retrieved from the bladder using a urethral catheter. Two types of bladder devices (hollow and solid) were prepared with a resilient material (Elastic Resin) incorporating three drug loads of lidocaine hydrochloride (10% w/w, 30% w/w and 50% w/w); a drug frequently used to treat interstitial cystitis and bladder pain. All of the devices showed acceptable blood compatibility, good resistance to compressive and stretching forces and were able to recover their original shape immediately once external forces were removed. In vitro drug release studies showed that a complete release of lidocaine was achieved within 4 days from the hollow devices, whereas the solid devices enabled sustained drug release for up to 14 days. SLA 3D printing therefore provides a new manufacturing route to produce bladder-retentive drug delivery devices using elastic polymers, and offers a revolutionary and personalised approach for clinical intravesical drug delivery
3D Printed Punctal Plugs for Controlled Ocular Drug Delivery
Dry eye disease is a common ocular disorder that is characterised by tear deficiency or excessive tear evaporation. Current treatment involves the use of eye drops; however, therapeutic efficacy is limited because of poor ocular bioavailability of topically applied formulations. In this study, digital light processing (DLP) 3D printing was employed to develop dexamethasone-loaded punctal plugs. Punctal plugs with different drug loadings were fabricated using polyethylene glycol diacrylate (PEGDA) and polyethylene glycol 400 (PEG 400) to create a semi-interpenetrating network (semi-IPN). Drug-loaded punctal plugs were characterised in terms of physical characteristics (XRD and DSC), potential drug-photopolymer interactions (FTIR), drug release profile, and cytocompatibility. In vitro release kinetics of the punctal plugs were evaluated using an in-house flow rig model that mimics the subconjunctival space. The results showed sustained release of dexamethasone for up to 7 days from punctal plugs made with 20% w/w PEG 400 and 80% w/w PEGDA, while punctal plugs made with 100% PEGDA exhibited prolonged releases for more than 21 days. Herein, our study demonstrates that DLP 3D printing represents a potential manufacturing platform for fabricating personalised drug-loaded punctal plugs with extended release characteristics for ocular administration
Influence of the nano-micro structure of the surface on bacterial adhesion
Biomaterials failures are frequently associated to the formation of bacterial biofilms on the surface. The aim of this work is to study the adhesion of non motile bacteria streptococci consortium and motile Pseudomonas fluorescens. Substrates with micro and nanopatterned topography were used. The influence of surface characteristics on bacterial adhesion was investigated using optical and epifluorescence microscopy, scanning electron microscopy (SEM) and atomic force microscopy (AFM). Results showed an important influence of the substratum nature. On microrough surfaces, initial bacterial adhesion was less significant than on smooth surfaces. In contrast, nanopatterned samples showed more bacterial attachment than the smooth control. It was also noted a remarkable difference in morphology, orientation and distribution of bacteria between the smooth and the nanostructured substrate. The results show the important effect of substratum nature and topography on bacterial adhesion which depended on the relation between roughness characteristics dimensions and bacterial size
Testing postcombustion CO2 capture with CaO in a 1.7 MWt pilot facility
AbstractCalcium looping, CaL, is a new and rapidly developing technology that makes use of CaO as a high temperature regenerable sorbent of CO2. Previous theoretical and lab scale studies have shown that this technology could lead to a substantial reduction in the cost of CO2 capture and energy penalties because heat can be effectively recovered from this high temperature solid looping system. We report in this paper on the first results from a pilot plant designed to demonstrate the viability of postcombustion capture of CO2 using CaL under conditions comparable to those expected in a large scale plant. The pilot includes two interconnected circulating fluidized bed reactors of 15 m height: a CO2 absorber (carbonator) able to treat up to 2400kg/h (equivalent to about 1.7 MWth), and an oxy-fired CFB calciner with a firing power between 1-3 MWth. CO2 capture efficiencies over 90% have been experimentally observed, including continuous operation with highly cycled solids in the system (i.e. with modest CO2 carrying capacities). SO2 capture is shown to be extremely high, with concentrations of SO2 well below 10 ppmv at the exit of the carbonator. Closure of carbon and sulfur balances is satisfactory. These results should be valuable base for model validation and scaling up purposes in future stages of the EU FP7 “CaOling” project, under which this investigation has been carried out
Seasonal variations of carcass characteristics, meat quality and nutrition value in iberian wild red deer
Aim of study: The effects of hunting season (autumn vs. winter) on carcass characteristics and meat quality of Iberian wild red deer were assessed. Area of study: A total of 100 males of wild red deer of Iberian genetic line (Cervus elaphus) were hunted on Ciudad Real (south central Spain). Material and methods: Yields for shoulder (with bone), neck, backbone, loin, tenderloin, leg (with bone), short plate and flank were determined. In addition, samples of Longissimus thoracis et lumborum and Rectus abdominis muscles were collected. Then, pH48, colour measurements, chemical composition, cooking loss, Warner Bratzler shear blade, fatty acid and amino acid profiles and mineral content were analyzed. Main results: Deer hunted in autumn (n=50) had higher (p<0.01) yields of shoulder, backbone and short plate and higher contents of intramuscular fat (IMF), cholesterol and K, Fe and Mn but lower (p<0.001) pH48 and Na, Mg, Zn and Cu contents than deer hunted in winter (n=50). Shear force tended (p=0.05) to be lower for meat collected in autumn than for meat collected in winter. However, loin yield was 59.2% higher (p<0.001) for winter than for autumn carcasses. Deer hunted in winter had higher α-linoleic acid (p<0.05) and long chain n-3 polyunsaturated (p<0.001) percentages than deer hunted in autumn Research highlights: Autumn hunting is recommended to obtain carcasses with higher yields of shoulder, backbone and short plate and meat with higher IMF. Conversely, winter hunting is advisable for higher loin yield and for a profile richer in polyunsaturated fatty acids
The Mass-Metallicity relation explored with CALIFA: I. Is there a dependence on the star formation rate?
We present the results on the study of the global and local M-Z relation
based on the first data available from the CALIFA survey (150 galaxies). This
survey provides integral field spectroscopy of the complete optical extent of
each galaxy (up to 2-3 effective radii), with enough resolution to separate
individual HII regions and/or aggregations. Nearly 3000 individual HII
regions have been detected. The spectra cover the wavelength range between
[OII]3727 and [SII]6731, with a sufficient signal-to-noise to derive the oxygen
abundance and star-formation rate associated with each region. In addition, we
have computed the integrated and spatially resolved stellar masses (and surface
densities), based on SDSS photometric data. We explore the relations between
the stellar mass, oxygen abundance and star-formation rate using this dataset.
We derive a tight relation between the integrated stellar mass and the
gas-phase abundance, with a dispersion smaller than the one already reported in
the literature (0.07 dex). Indeed, this
dispersion is only slightly larger than the typical error derived for our
oxygen abundances. However, we do not find any secondary relation with the
star-formation rate, other than the one induced due to the primary relation of
this quantity with the stellar mass. We confirm the result using the 3000
individual HII regions, for the corresponding local relations.
Our results agree with the scenario in which gas recycling in galaxies, both
locally and globally, is much faster than other typical timescales, like that
of gas accretion by inflow and/or metal loss due to outflows. In essence,
late-type/disk dominated galaxies seem to be in a quasi-steady situation, with
a behavior similar to the one expected from an instantaneous
recycling/closed-box model.Comment: 19 Pages, 8 figures, Accepted for Publishing in Astronomy and
Astrophysics (A&A
Mapping the properties of blue compact dwarf galaxies: integral field spectroscopy with PMAS
(Abridged) We perform integral field spectroscopy of a sample of Blue compact
dwarf (BCD) galaxies with the aim of analyzing their morphology, the spatial
distribution of some of their physical properties (excitation, extinction, and
electron density) and their relationship with the distribution and evolutionary
state of the stellar populations. Integral field spectroscopy observations of
the sample galaxies were carried out with the Potsdam Multi-Aperture
Spectrophotometer (PMAS) at the 3.5 m telescope at Calar Alto Observatory. An
area 16 arcsec x 16 arcsec in size was mapped with a spatial sampling of 1
arcsec x 1 arcsec. We obtained data in the 3590-6996 Angstroms spectral range,
with a linear dispersion of 3.2 Angstroms per pixel. From these data we built
two-dimensional maps of the flux of the most prominent emission lines, of two
continuum bands, of the most relevant line ratios, and of the gas velocity
field. Integrated spectra of the most prominent star-forming regions and of
whole objects within the FOV were used to derive their physical parameters and
the gas metal abundances. Six galaxies display the same morphology both in
emission line and in continuum maps; only in two objects, Mrk 32 and Tololo
1434+032, the distributions of the ionized gas and of the stars differ
considerably. In general the different excitation maps for a same object
display the same pattern and trace the star-forming regions, as expected for
objects ionized by hot stars; only the outer regions of Mrk 32, I Zw 123 and I
Zw 159 display higher [SII]/Halpha values, suggestive of shocks. Six galaxies
display an inhomogeneous dust distribution. Regarding the kinematics, Mrk 750,
Mrk 206 and I Zw 159 display a clear rotation pattern, while in Mrk 32, Mrk 475
and I Zw 123 the velocity fields are flat.Comment: 27 pages, 11 figures; Accepted for publication in A&
Information flow during gene activation by signaling molecules: ethylene transduction in Arabidopsis cells as a study system
<p>Abstract</p> <p>Background</p> <p>We study root cells from the model plant <it>Arabidopsis thaliana </it>and the communication channel conformed by the ethylene signal transduction pathway. A basic equation taken from our previous work relates the probability of expression of the gene <it>ERF</it>1 to the concentration of ethylene.</p> <p>Results</p> <p>The above equation is used to compute the Shannon entropy (<it>H</it>) or degree of uncertainty that the genetic machinery has during the decoding of the message encoded by the ethylene specific receptors embedded in the endoplasmic reticulum membrane and transmitted into the nucleus by the ethylene signaling pathway. We show that the amount of information associated with the expression of the master gene <it>ERF</it>1 (Ethylene Response Factor 1) can be computed. Then we examine the system response to sinusoidal input signals with varying frequencies to determine if the cell can distinguish between different regimes of information flow from the environment. Our results demonstrate that the amount of information managed by the root cell can be correlated with the frequency of the input signal.</p> <p>Conclusion</p> <p>The ethylene signaling pathway cuts off very low and very high frequencies, allowing a window of frequency response in which the nucleus reads the incoming message as a sinusoidal input. Out of this window the nucleus reads the input message as an approximately non-varying one. From this frequency response analysis we estimate: a) the gain of the system during the synthesis of the protein ERF1 (~-5.6 dB); b) the rate of information transfer (0.003 bits) during the transport of each new ERF1 molecule into the nucleus and c) the time of synthesis of each new ERF1 molecule (~21.3 s). Finally, we demonstrate that in the case of the system of a single master gene (<it>ERF</it>1) and a single slave gene (<it>HLS</it>1), the total Shannon entropy is completely determined by the uncertainty associated with the expression of the master gene. A second proposition shows that the Shannon entropy associated with the expression of the <it>HLS</it>1 gene determines the information content of the system that is related to the interaction of the antagonistic genes <it>ARF</it>1, 2 and <it>HLS</it>1.</p
- …