52 research outputs found

    Metabolic effects of a 24-week energy-restricted intervention combined with low or high dairy intake in overweight women:An NMR-based metabolomics investigation

    Get PDF
    We investigated the effect of a 24-week energy-restricted intervention with low or high dairy intake (LD or HD) on the metabolic profiles of urine, blood and feces in overweight/obese women by NMR spectroscopy combined with ANOVA-simultaneous component analysis (ASCA). A significant effect of dairy intake was found on the urine metabolome. HD intake increased urinary citrate, creatinine and urea excretion, and decreased urinary excretion of trimethylamine-N-oxide (TMAO) and hippurate relative to the LD intake, suggesting that HD intake was associated with alterations in protein catabolism, energy metabolism and gut microbial activity. In addition, a significant time effect on the blood metabolome was attributed to a decrease in blood lipid and lipoprotein levels due to the energy restriction. For the fecal metabolome, a trend for a diet effect was found and a series of metabolites, such as acetate, butyrate, propionate, malonate, cholesterol and glycerol tended to be affected. Overall, even though these effects were not accompanied by a higher weight loss, the present metabolomics data reveal that a high dairy intake is associated with endogenous metabolic effects and effects on gut microbial activity that potentially impact body weight regulation and health. Moreover, ASCA has a great potential for exploring the effect of intervention factors and identifying altered metabolites in a multi-factorial metabolomic study

    A broad range quorum sensing inhibitor working through sRNA inhibition

    Get PDF
    Abstract For the last decade, chemical control of bacterial virulence has received considerable attention. Ajoene, a sulfur-rich molecule from garlic has been shown to reduce expression of key quorum sensing regulated virulence factors in the opportunistic pathogen Pseudomonas aeruginosa. Here we show that the repressing effect of ajoene on quorum sensing occurs by inhibition of small regulatory RNAs (sRNA) in P. aeruginosa as well as in Staphylococcus aureus, another important human pathogen that employs quorum sensing to control virulence gene expression. Using various reporter constructs, we found that ajoene lowered expression of the sRNAs RsmY and RsmZ in P. aeruginosa and the small dual-function regulatory RNA, RNAIII in S. aureus, that controls expression of key virulence factors. We confirmed the modulation of RNAIII by RNA sequencing and found that the expression of many QS regulated genes encoding virulence factors such as hemolysins and proteases were lowered in the presence of ajoene in S. aureus. Importantly, our findings show that sRNAs across bacterial species potentially may qualify as targets of anti-virulence therapy and that ajoene could be a lead structure in search of broad-spectrum compounds transcending the Gram negative-positive borderline

    Species-specific responses of Late Quaternary megafauna to climate and humans

    Get PDF
    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.This paper is in the memory of our friend and colleague Dr. Andrei Sher, who was a major contributor of this study. Dr Sher died unexpectedly, but his major contributions to the field of Quaternary science will be remembered and appreciated for many years to come. We are grateful to Dr. Adrian Lister and Dr. Tony Stuart for guides and discussions. Thanks to Tina B. Brandt, Dr. Bryan Hockett and Alice Telka for laboratory help and samples and to L. Malik R. Thrane for his work on the megafauna locality database. Data taken from the Stage 3 project was partly funded by Grant #F/757/A from the Leverhulme Trust, together with a grant from the McDonald Grants and Awards Fund. We acknowledge the Danish National Research Foundation, the Lundbeck Foundation, the Danish Council for Independent Research and the US National Science Foundation for financial suppor

    Direct observation of fouling phenomena during cross-flow filtration:Influence of particle surface charge

    No full text
    Membrane fouling is inherent in all types of membrane filtration. In microfiltration, particles are often deposited on the membrane surface, forming a filter cake whose structure and behaviour play crucial roles in the filterability of suspensions. Filter cake formation is often measured or calculated indirectly from pressure flux data. In this study, filter cakes were characterized by direct optical observation of the surface of a single hollow-fibre membrane during cross-flow filtration. Monodisperse polymer model particles with varying surface charge densities were suspended in water and filtered. Results indicate a significant difference in the behaviour of filter cakes formed by differently charged particles. Increasing the particle surface charge generally increases both the specific resistance and compressibility of the filter cake, whereas lowering the charge increases the filter cake growth rate and steady-state thickness. Attempts to remove fouling were made using relaxation, backwash, and cross-flow shear. Relaxation alone did not remove the filter cake and recompression happened quickly. Effectively removing the filter cake required a combination of backwash and high cross-flow shear. However, a thin layer of particles remained on the membrane after cleaning, and it was demonstrated that this layer accounts for a significant amount of the overall filter cake resistance
    corecore