344 research outputs found
A comparison of Roman Catholic and Protestant religious education in the Philippines
https://place.asburyseminary.edu/ecommonsatsdissertations/2322/thumbnail.jp
Dynamical charge and spin density wave scattering in cuprate superconductor
We show that a variety of spectral features in high-T_c cuprates can be
understood from the coupling of charge carriers to some kind of dynamical order
which we exemplify in terms of fluctuating charge and spin density waves. Two
theoretical models are investigated which capture different aspects of such
dynamical scattering. The first approach leaves the ground state in the
disordered phase but couples the electrons to bosonic degrees of freedom,
corresponding to the quasi singular scattering associated with the closeness to
an ordered phase. The second, more phenomological approach starts from the
construction of a frequency dependent order parameter which vanishes for small
energies. Both theories capture scanning tunneling microscopy and angle-resoved
photoemission experiments which suggest the protection of quasiparticles close
to the Fermi energy but the manifestation of long-range order at higher
frequencies.Comment: 27 pages, 13 figures, to appear in New J. Phy
Optical Absorption of CuO antiferromagnetic chains at finite temperatures
We use a high-statistic quantum Monte Carlo and Maximum Entropy
regularization method to compute the dynamical energy correlation function
(DECF) of the one-dimensional (1D) antiferromagnetic Heisenberg model
at finite temperatures. We also present a finite temperature analytical ansatz
for the DECF which is in very good agreement with the numerical data in all the
considered temperature range. From these results, and from a finite temperature
generalisation of the mechanism proposed by Lorenzana and Sawatsky [Phys. Rev.
Lett. {\bf 74}, 1867 (1995)], we compute the line shape for the optical
absorption spectra of multimagnon excitations assisted by phonons for quasi 1D
compounds. The line shape has two contributions analogous to the Stokes and
anti-Stokes process of Raman scattering. Our low temperature data is in good
agreement with optical absorption experiments of CuO chains in
SrCuO. Our finite temperature results provide a non trivial prediction
on the dynamics of the Heisenberg model at finite temperatures that is easy to
verify experimentally.Comment: 7 pages, 5 figure
Optical excitation of phase modes in strongly disordered superconductors
According to the Goldstone theorem the breaking of a continuous U(1) symmetry
comes along with the existence of low-energy collective modes. In the context
of superconductivity these excitations are related to the phase of the
superconducting (SC) order parameter and for clean systems are optically
inactive. Here we show that for strongly disordered superconductors phase modes
acquire a dipole moment and appear as a subgap spectral feature in the optical
conductivity. This finding is obtained with both a gauge-invariant random-phase
approximation scheme based on a fermionic Bogoliubov-de Gennes state as well as
with a prototypical bosonic model for disordered superconductors. In the
strongly disordered regime, where the system displays an effective granularity
of the SC properties, the optically active dipoles are linked to the isolated
SC islands, offering a new perspective for realizing microwave optical devices
Hidden Ferronematic Order in Underdoped Cuprates
We study a model for low doped cuprates where holes aggregate into oriented
stripe segments which have a vortex and an antivortex fixed to the extremes. We
argue that due to the interaction between segments a state with macroscopic
polarization is stabilized, which we call a ferronematic. This state can be
characterized as a charge nematic which, due to the net polarization, breaks
inversion symmetry and also exhibits an incommensurate spin modulation. Our
calculation can reproduce the doping dependent spin structure factor of
lanthanum cuprates in excellent agreement with experiment and allows to
rationalize experiments in which the incommensurability has an order
parameter-like temperature dependence.Comment: 5 pages, 4 figure
Inhomogeneous Gutzwiller approximation with random phase fluctuations for the Hubbard model
We present a detailed study of the time-dependent Gutzwiller approximation
for the Hubbard model. The formalism, labelled GA+RPA, allows us to compute
random-phase approximation-like (RPA) fluctuations on top of the Gutzwiller
approximation (GA). No restrictions are imposed on the charge and spin
configurations which makes the method suitable for the calculation of linear
excitations around symmetry-broken solutions. Well-behaved sum rules are obeyed
as in the Hartree-Fock (HF) plus RPA approach. Analytical results for a
two-site model and numerical results for charge-charge and current-current
dynamical correlation functions in one and two dimensions are compared with
exact and HF+RPA results, supporting the much better performance of GA+RPA with
respect to conventional HF+RPA theory.Comment: 14 pages, 6 figure
Quantum Lifshitz point in the infinite dimensional Hubbard model
We show that the Gutzwiller variational wave function is surprisingly
accurate for the computation of magnetic phase boundaries in the infinite
dimensional Hubbard model. This allows us to substantially extend known phase
diagrams. For both the half-hypercubic and the hypercubic lattice a large part
of the phase diagram is occupied by an incommensurate phase, intermediate
between the ferromagnetic and the paramagnetic phase. In case of the hypercubic
lattice the three phases join at a new quantum Lifshitz point at which the
order parameter is critical and the stiffness vanishes.Comment: 4 pages, 3 figure
Phonon renormalization from local and transitive electron-lattice couplings in strongly correlated systems
Within the time-dependent Gutzwiller approximation (TDGA) applied to
Holstein- and SSH-Hubbard models we study the influence of electron
correlations on the phonon self-energy. For the local Holstein coupling we find
that the phonon frequency renormalization gets weakened upon increasing the
onsite interaction for all momenta. In contrast, correlations can enhance
the phonon frequency shift for small wave-vectors in the SSH-Hubbard model.
Moreover the TDGA applied to the latter model provides a mechanism which leads
to phonon frequency corrections at intermediate momenta due to the coupling
with double occupancy fluctuations. Both models display a shift of the
nesting-induced to a instability when the onsite interaction becomes
sufficiently strong and thus establishing phase separation as a generic
phenomenon of strongly correlated electron-phonon coupled systems.Comment: 14 pages, 11 figure
- …