6,206 research outputs found

    Josephson Junctions defined by a Nano-Plough

    Full text link
    We define superconducting constrictions by ploughing a deposited Aluminum film with a scanning probe microscope. The microscope tip is modified by electron beam deposition to form a nano-plough of diamond-like hardness, what allows the definition of highly transparent Josephson junctions. Additionally a dc-SQUID is fabricated to verify appropriate functioning of the junctions. The devices are easily integrated in mesoscopic devices as local radiation sources and can be used as tunable on-chip millimeter wave sources

    Preconditioning Maximal Center Gauge with Stout Link Smearing in SU(3)

    Get PDF
    Center vortices are studied in SU(3) gauge theory using Maximal Center Gauge (MCG) fixing. Stout link smearing and over-improved stout link smearing are used to construct a preconditioning gauge field transformation, applied to the original gauge field before fixing to MCG. We find that preconditioning successfully achieves higher gauge fixing maxima. We observe a reduction in the number of identified vortices when preconditioning is used, and also a reduction in the vortex-only string tension.Comment: 9 pages, 4 figure

    Coulombic Energy Transfer and Triple Ionization in Clusters

    Full text link
    Using neon and its dimer as a specific example, it is shown that excited Auger decay channels that are electronically stable in the isolated monomer can relax in a cluster by electron emission. The decay mechanism, leading to the formation of a tricationic cluster, is based on an efficient energy-transfer process from the excited, dicationic monomer to a neighbor. The decay is ultrafast and expected to be relevant to numerous physical phenomena involving core holes in clusters and other forms of spatially extended atomic and molecular matter.Comment: 5 pages, 1 figure, to be published in PR

    Diverging thermal expansion of the spin-ladder system (C5_5H12_{12}N)2_2CuBr4_4

    Get PDF
    We present high-resolution measurements of the c⋆c^\star-axis thermal expansion and magnetostriction of piperidinium copper bromide \hp. The experimental data at low temperatures is well accounted for by a two-leg spin-ladder Hamiltonian. The thermal expansion shows a complex behaviour with various sign changes and approaches a 1/T1/\sqrt{T} divergence at the critical fields. All low-temperature features are semi-quantitatively explained within a free fermion model; full quantitative agreement is obtained with Quantum Monte Carlo simulations.Comment: 4 pages, 5 figures; version 2 is slightly shortened and typos are correcte

    Hanbury Brown and Twiss interferometry at a free-electron laser

    Full text link
    We present measurements of second- and higher-order intensity correlation functions (so-called Hanbury Brown and Twiss experiment) performed at the free-electron laser (FEL) FLASH in the non-linear regime of its operation. We demonstrate the high transverse coherence properties of the FEL beam with a degree of transverse coherence of about 80% and degeneracy parameter of the order 10^9 that makes it similar to laser sources. Intensity correlation measurements in spatial and frequency domain gave an estimate of the FEL average pulse duration of 50 fs. Our measurements of the higher-order correlation functions indicate that FEL radiation obeys Gaussian statistics, which is characteristic to chaotic sources.Comment: 19 pages, 6 figures, 1 table, 40 reference

    Statistical properties of a free-electron laser revealed by the Hanbury Brown and Twiss interferometry

    Full text link
    We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission (SASE) free-electron laser (FEL) FLASH at DESY in Hamburg by means of Hanbury Brown and Twiss (HBT) interferometry. The experiments were performed at the FEL wavelengths of 5.5 nm, 13.4 nm, and 20.8 nm. We determined the 2-nd order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain complicated behaviour of the 2-nd order intensity correlation function we developed advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in most experiments several beams were present in radiating field and in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of the FEL radiation.Comment: 29 pages, 14 figures, 3 table

    Scaling properties of the critical behavior in the dilute antiferromagnet Fe(0.93)Zn(0.07)F2

    Full text link
    Critical scattering analyses for dilute antiferromagnets are made difficult by the lack of predicted theoretical line shapes beyond mean-field models. Nevertheless, with the use of some general scaling assumptions we have developed a procedure by which we can analyze the equilibrium critical scattering in these systems for H=0, the random-exchange Ising model, and, more importantly, for H>0, the random-field Ising model. Our new fitting approach, as opposed to the more conventional techniques, allows us to obtain the universal critical behavior exponents and amplitude ratios as well as the critical line shapes. We discuss the technique as applied to Fe(0.93)Zn(0.07)F2. The general technique, however, should be applicable to other problems where the scattering line shapes are not well understood but scaling is expected to hold.Comment: 17 pages, 5 figure
    • …
    corecore