3 research outputs found

    Liver Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    No full text
    Both high-carbohydrate diet (HCD) and high-fat diet (HFD) modulate liver fat accumulation and inflammation, however, there is a lack of data on the potential contribution of carbohydrates and lipids separately. For this reason, the changes in liver fatty acid (FA) composition in male Swiss mice fed with HCD or HFD were compared, at the time points 0 (before starting the diets), and after 7, 14, 28 or 56 days. Activities of stearoyl-CoA desaturase-1 (SCD-1), ∆-6 desaturase (D6D), elongases and de novo lipogenesis (DNL) were estimated. Liver mRNA expression of acetyl-CoA carboxylase 1 (ACC1) was evaluated as an additional indicator of the de novo lipogenesis. Myeloperoxidase activity, nitric oxide (NO) production, and mRNA expressions of F4/80, type I collagen, interleukin (IL)-6, IL-1ÎČ, IL-10, and tumor necrosis factor-α (TNF-α) were measured as indication of the liver inflammatory state. The HCD group had more intense lipid deposition, particularly of saturated fatty acids (SFAs) and monounsaturated fatty acids (MUFAs). This group also showed higher DNL, SCD-1, and D6D activities associated with increased NO concentration, as well as myeloperoxidase activity. Livers from the HFD group showed higher elongase activity, stored more polyunsaturated fatty acids (PUFAs) and had a lower omega-6/omega-3 fatty acid (n-6/n-3) ratio. In conclusion, liver lipid accumulation, fatty acids (FA) composition and inflammation were modulated by the dietary composition of lipids and carbohydrates. The HCD group had more potent lipogenic and inflammatory effects in comparison with HFD

    Brain Fatty Acid Composition and Inflammation in Mice Fed with High-Carbohydrate Diet or High-Fat Diet

    No full text
    Both high fat diet (HFD) and high carbohydrate diet (HCD) modulate brain fatty acids (FA) composition. Notwithstanding, there is a lack of information on time sequence of brain FA deposition either for HFD or HCD. The changes in brain FA composition in mice fed with HFD or HCD for 7, 14, 28, or 56 days were compared with results of 0 (before starting given the diets). mRNA expressions of allograft inflammatory factor 1 (Aif1), cyclooxygenase-2 (Cox 2), F4/80, inducible nitric oxide synthase (iNOS), integrin subunit alpha m (Itgam), interleukin IL-1β (IL-1β), IL-6, IL-10, and tumor necrosis factor alpha (TNF-α) were measured. The HFD group had higher speed of deposition of saturated FA (SFA), monounsaturated FA (MUFA), and polyunsaturated FA (PUFA) at the beginning of the experimental period. However, on day 56, the total amount of SFA, MUFA, and PUFA were similar. mRNA expressions of F4/80 and Itgam, markers of microglia infiltration, were increased (p < 0.05) in the brain of the HCD group whereas inflammatory marker index (IMI) was higher (46%) in HFD group. In conclusion, the proportion of fat and carbohydrates in the diet modulates the speed deposition of FA and expression of inflammatory gene markers

    Rivaroxaban with or without aspirin in stable cardiovascular disease

    No full text
    BACKGROUND: We evaluated whether rivaroxaban alone or in combination with aspirin would be more effective than aspirin alone for secondary cardiovascular prevention. METHODS: In this double-blind trial, we randomly assigned 27,395 participants with stable atherosclerotic vascular disease to receive rivaroxaban (2.5 mg twice daily) plus aspirin (100 mg once daily), rivaroxaban (5 mg twice daily), or aspirin (100 mg once daily). The primary outcome was a composite of cardiovascular death, stroke, or myocardial infarction. The study was stopped for superiority of the rivaroxaban-plus-aspirin group after a mean follow-up of 23 months. RESULTS: The primary outcome occurred in fewer patients in the rivaroxaban-plus-aspirin group than in the aspirin-alone group (379 patients [4.1%] vs. 496 patients [5.4%]; hazard ratio, 0.76; 95% confidence interval [CI], 0.66 to 0.86; P<0.001; z=−4.126), but major bleeding events occurred in more patients in the rivaroxaban-plus-aspirin group (288 patients [3.1%] vs. 170 patients [1.9%]; hazard ratio, 1.70; 95% CI, 1.40 to 2.05; P<0.001). There was no significant difference in intracranial or fatal bleeding between these two groups. There were 313 deaths (3.4%) in the rivaroxaban-plus-aspirin group as compared with 378 (4.1%) in the aspirin-alone group (hazard ratio, 0.82; 95% CI, 0.71 to 0.96; P=0.01; threshold P value for significance, 0.0025). The primary outcome did not occur in significantly fewer patients in the rivaroxaban-alone group than in the aspirin-alone group, but major bleeding events occurred in more patients in the rivaroxaban-alone group. CONCLUSIONS: Among patients with stable atherosclerotic vascular disease, those assigned to rivaroxaban (2.5 mg twice daily) plus aspirin had better cardiovascular outcomes and more major bleeding events than those assigned to aspirin alone. Rivaroxaban (5 mg twice daily) alone did not result in better cardiovascular outcomes than aspirin alone and resulted in more major bleeding events
    corecore