5 research outputs found

    Preparation, Characterization and Release of Urea from Wheat Gluten Electrospun Membranes

    No full text
    Homogeneous and thin porous membranes composed of oriented fibers were obtained from wheat gluten (WG) using the electrospinning technique. SEM micrographs showed an asymmetric structure and some porosity, which, in addition to a small thickness of 40 mm, are desirable characteristics for the membranes’ potential application in release systems. The membranes were loaded with urea to obtain pastilles. FT-IR and DSC studies confirmed the existence of interactions via hydrogen bonding between urea and WG proteins. The pastilles were studied as prolonged-released systems of urea in water. The release of urea during the first 10 min was very fast; then, the rate of release decreased as it reached equilibrium at 300 min, with a total of »98% urea released. TGA analysis showed that the release system obtained is thermally stable up to a temperature of 117 °C. It was concluded that a prolonged-release system of urea could be satisfactorily produced using WG fibers obtained by electrospinning for potential application in agricultural crops

    Composite Hydrogel of Poly(acrylamide) and Starch as Potential System for Controlled Release of Amoxicillin and Inhibition of Bacterial Growth

    No full text
    Novel composite hydrogels of poly(acrylamide) (PAAm) and starch, at different ratios, were studied as potential platforms for controlled release of amoxicillin. The composite hydrogels were characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and swelling kinetic measurements. The morphology analysis revealed the presence of starch granules well embedded within the PAAm network. The increase in starch content increased the rate of water uptake and the swelling degree at equilibrium. The amoxicillin release kinetics was sensitive to pH and temperature conditions. The in vitro bacterial growth inhibition of antibiotic-loaded hydrogels was tested though disc diffusion assays with Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 25923, and a carbapenemase producer Pseudomonas aeruginosa strain. The optimal release profile at physiological conditions and the powerful bacteria growth inhibition effects of amoxicillin-loaded hydrogels evidenced its potential for biomedical applications, particularly in oral administration and the local treatment of bacterial infections
    corecore