52 research outputs found

    Electric Field Enhanced Plasmid Delivery to Liver Hepatocellular Carcinomas

    Get PDF
    Electric field enhanced molecular delivery for cancer research and treatment is a new technology that has demonstrated its effectiveness in clinical trials using bleomycin or cisplatin (Heller, R., Gilbert, R., Jaroszeski, M. J. Clinical applications of electrochemotherapy, Advanced Drug Delivery Reviews 35,119-129, 1999), as chemotherapeutic agents. The technology is being investigated in research applications for applicability as a method to enhance gene expression in a target tumor. Success is predicated on an appropriate effective electric field mediated delivery protocol that triggers significant appropriate gene expression duration and levels. An electric field mediated delivery protocol includes a set of conditions associated with the electric field, the electroporation signature, as well as parameters associated with the plasmid and the electric field applicator. Manipulation of the electrical parameters within the electroporation signature generates different gene expression levels in liver hepatocellular carcinomas. Statistically significant gene expression levels were obtained that differed by an order of magnitude when two different electric field strength and duration conditions were employed

    IL-12 Plasmid Delivery by in Vivo Electroporation for the Successful Treatment of Established Subcutaneous B16.F10 Melanoma

    Get PDF
    Interleukin-12 (IL-12) has been used in numerous immunotherapy protocols against melanoma. However, delivery of IL-12 in the form of recombinant protein can result in severe toxicity, and gene therapy has had limited success against B16.F10 murine melanoma. The purpose of this study was to examine the effectiveness of in vivo electroporation for the delivery of plasmid DNA encoding IL-12 as an antitumor agent against B16.F10 melanoma. We treated mice bearing established B16.F10 melanoma tumors with intratumoral (i.t.) or intramuscular (i.m.) injections of a plasmid encoding IL-12, followed by in vivo electroporation. For i.t. treatments, we used an applicator containing six penetrating electrodes to deliver 1500-V/cm, 100-micros pulses. We administered i.m. pulses with an applicator containing four penetrating electrodes delivering 100-V/cm, 20-ms pulses. The i.t. treatment resulted in the cure of 47% of tumor-bearing mice, and 70% of cured mice were resistant to challenge with B16.F10 cells. The i.m. treatment did not result in tumor regression. We found that i.t. treatment resulted in increased levels of IL-12 and interferon-γ (IFN-γ) within the tumors, the influx of lymphocytes into the tumors, and reduction in vascularity. Neither i.m. nor i.t. treatment was successful against B16.F10 tumors in a nude mouse model, supporting a role for T cells in regression of this tumor model

    Comparison of Electrically Mediated and Liposome-Complexed Plasmid DNA Delivery to the Skin

    Get PDF
    BACKGROUND: Electroporation is an established technique for enhancing plasmid delivery to many tissues in vivo, including the skin. We have previously demonstrated efficient delivery of plasmid DNA to the skin utilizing a custom-built four-plate electrode. The experiments described here further evaluate cutaneous plasmid delivery using in vivo electroporation. Plasmid expression levels are compared to those after liposome mediated delivery. METHODS: Enhanced electrically-mediated delivery, and less extensively, liposome complexed delivery, of a plasmid encoding the reporter luciferase was tested in rodent skin. Expression kinetics and tissue damage were explored as well as testing in a second rodent model. RESULTS: Experiments confirm that electroporation alone is more effective in enhancing reporter gene expression than plasmid injection alone, plasmid conjugation with liposomes followed by injection, or than the combination of liposomes and electroporation. However, with two time courses of multiple electrically-mediated plasmid deliveries, neither the levels nor duration of transgene expression are significantly increased. Tissue damage may increase following a second treatment, no further damage is observed after a third treatment. When electroporation conditions utilized in a mouse model are tested in thicker rat skin, only higher field strengths or longer pulses were as effective in plasmid delivery. CONCLUSION: Electroporation enhances reporter plasmid delivery to the skin to a greater extent than the liposome conjugation method tested. Multiple deliveries do not necessarily result in higher or longer term expression. In addition, some impact on tissue integrity with respect to surface damage is observed. Pulsing conditions should be optimized for the model and for the expression profile desired

    Monopolar Gene Electrotransfer Enhances Plasmid DNA Delivery to Skin

    Get PDF
    A novel monopolar electroporation system and methodologies were developed for in vivo electroporation intended for potential clinical applications such as gene therapy. We hypothesized that an asymmetric anode/cathode electrode applicator geometry could produce favorable electric fields for electroporation, without the typical drawback associated with traditional needle and parallel plate geometries. Three monopolar electrode applicator prototypes were built and tested for gene delivery of reporter genes to the skin in a guinea pig model. Gene expression was evaluated in terms of kinetics over time and expression distribution within the treatment site. Different pulsing parameters, including pulse amplitude, pulse duration, and pulse number were evaluated. Monopolar gene electrotransfer significantly enhanced gene expression compared to controls over the course of 21 days. Gene expression distribution was observed throughout the full thickness of the epidermis, as well as notable expression in the deeper layers of the skin, including the dermis, and the underlying striated muscle without any damage at the treatment site, which is a substantial improvement over previously reported expression confined to the epidermis only. Expression distribution observed is consistent with the electric field distribution model, indicating that our novel electrode geometry results in targeted electroporation and gene transfer. This is important, as it may facilitate translation of many electroporation-based clinical therapies including gene therapies, IRE, and ECT

    Activation of DNA Pattern Recognition Receptors After Plasmid Electrotransfer in Melanoma Cells and Tumors

    Get PDF
    (First sentence) In vivo electroporation or electrotransfer, the application of controlled electric pulses, enhances delivery of plasmid DNA to a wide variety of healthy tissues as well as tumor types

    Saccharomyces Cerevisiae sec59 Cells Are Deficient in Dolichol Kinase Activity

    Get PDF
    The temperature-sensitive Saccharomyces cerevisiae mutant sec59 accumulates inactive and incompletely glycosylated protein precursors in its endoplasmic reticulum at the restrictive temperature. O-mannosylation and glycosyl phosphatidylinositol membrane anchoring of protein are also abolished, consistent with a deficiency in dolichyl phosphate mannose. Membranes prepared from sec59 cells that had been shifted to the restrictive temperature, however, made normal amounts of dolichyl phosphate mannose when exogenous dolichyl phosphate was supplied, but dolichyl phosphate mannose synthesis was severely depressed in the absence of exogenous dolichyl phosphate. Quantitative measurements of dolichyl phosphate in sec59 cells showed that the levels were decreased to 48% of wild type at the permissive temperature and to less than 10% at the restrictive temperature. Assays of enzymes from the dolichyl phosphate synthetic pathway, cis-prenyltransferase and dolichyl pyrophosphate phosphatase, gave wild-type levels. However, dolichol kinase activity was greatly decreased. When sec59 cells were transformed with a plasmid that overexpresses the wild-type gene, dolichol kinase activity increased 10-fold over wild-type levels. These results strongly suggest that the sec59 gene encodes dolichol kinase

    Electro-Gene Transfer to Skin Using a Noninvasive Multielectrode Array

    Get PDF
    Because of its large surface area and easy access for both delivery and monitoring, the skin is an attractive target for gene therapy for cutaneous diseases, vaccinations and several metabolic disorders. The critical factors for DNA delivery to the skin by electroporation (EP) are effective expression levels and minimal or no tissue damage. Here, we evaluated the non-invasive multielectrode array (MEA) for gene electrotransfer. For these studies we utilized a guinea pig model, which has been shown to have a similar thickness and structure to human skin. Our results demonstrate significantly increased gene expression 2 to 3 logs above injection of plasmid DNA alone over 15 days. Furthermore, gene expression could be enhanced by increasing the size of the treatment area. Transgene-expressing cells were observed exclusively in the epidermal layer of the skin. In contrast to caliper or plate electrodes, skin EP with the MEA greatly reduced muscle twitching and resulted in minimal and completely recoverable skin damage. These results suggest that EP with MEA can be an efficient and non-invasive skin delivery method with less adverse side effects than other EP delivery systems and promising clinical applications

    Plasma-Activated Air Mediates Plasmid DNA Delivery In Vivo

    Get PDF
    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P \u3c 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P \u3c 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets

    Cytosolic DNA Sensor Upregulation Accompanies DNA Electrotransfer in B16.F10 Melanoma Cells

    Get PDF
    In several preclinical tumor models, antitumor effects occur after intratumoral electroporation, also known as electrotransfer, of plasmid DNA devoid of a therapeutic gene. In mouse melanomas, these effects are preceded by significant elevation of several proinflammatory cytokines. These observations implicate the binding and activation of intracellular DNA-specific pattern recognition receptors or DNA sensors in response to DNA electrotransfer. In tumors, IFN β mRNA and protein levels significantly increased. The mRNAs of several DNA sensors were detected, and DAI, DDX60, and p204 tended to be upregulated. These effects were accompanied with reduced tumor growth and increased tumor necrosis. In B16. F10 cells in culture, IFN beta mRNA and protein levels were significantly upregulated. The mRNAs for several DNA sensors were present in these cells; DNA-dependent activator of interferon regulatory factor (DAI), DEAD (Asp-Glu-Ala-Asp) box polypeptide 60 (DDX60), and p204 were significantly upregulated while DDX60 protein levels were coordinately upregulated. Upregulation of DNA sensors in tumors could be masked by the lower transfection efficiency compared to in vitro or to dilution by other tumor cell types. Mirroring the observation of tumor necrosis, cells underwent a significant DNA concentration-dependent decrease in proliferation and survival. Taken together, these results indicate that DNA electrotransfer may cause the upregulation of several intracellular DNA sensors in B16. F10 cells, inducing effects in vitro and potentially in vivo

    Effect of Electrically Mediated Intratumor and Intramuscular Delivery of a Plasmid Encoding IFN α on Visible B16 Mouse Melanomas

    Get PDF
    Interferon α may be used as a single agent therapy for metastatic malignant melanoma or as an adjuvant to chemotherapy. Delivery of interferon α by gene therapy offers an alternative to recombinant protein therapy. Electrically mediated delivery enhances plasmid expression in a number of tissues, for instance skin, liver, muscle and tumors including melanomas. Here we compare the effect of delivery of a plasmid encoding mouse interferon α on growth of visible B16 mouse melanomas following electrically mediated delivery to muscle or directly to the tumor. Intratumoral delivery of interferon α plasmid not only slows melanoma growth, but induces complete, long term, regression. This effect was not observed after intramuscular delivery
    • …
    corecore