13,205 research outputs found

    Numerical variational methods applied to cylinder buckling

    Full text link
    We review and compare different computational variational methods applied to a system of fourth order equations that arises as a model of cylinder buckling. We describe both the discretization and implementation, in particular how to deal with a 1 dimensional null space. We show that we can construct many different solutions from a complex energy surface. We examine numerically convergence in the spatial discretization and in the domain size. Finally we give a physical interpretation of some of the solutions found.Comment: 23 pages, 12 figures, 6 table

    Quantum Reciprocity Conjecture for the Non-Equilibrium Steady State

    Full text link
    By considering the lack of history dependence in the non-equilibrium steady state of a quantum system we are led to conjecture that in such a system, there is a set of quantum mechanical observables whose retarded response functions are insensitive to the arrow of time, and which consequently satisfy a quantum analog of the Onsager reciprocity relations. Systems which satisfy this conjecture can be described by an effective Free energy functional. We demonstrate that the conjecture holds in a resonant level model of a multi-lead quantum dot.Comment: References revised to take account of related work on Onsager reciprocity in mesoscopics by Christen, and in hydrodynamics by Mclennan, Dufty and Rub

    Retrograde transport pathways utilised by viruses and protein toxins

    Get PDF
    A model has been presented for retrograde transport of certain toxins and viruses from the cell surface to the ER that suggests an obligatory interaction with a glycolipid receptor at the cell surface. Here we review studies on the ER trafficking cholera toxin, Shiga and Shiga-like toxins, Pseudomonas exotoxin A and ricin, and compare the retrograde routes followed by these protein toxins to those of the ER trafficking SV40 and polyoma viruses. We conclude that there is in fact no obligatory requirement for a glycolipid receptor, nor even with a protein receptor in a lipid-rich environment. Emerging data suggests instead that there is no common pathway utilised for retrograde transport by all of these pathogens, the choice of route being determined by the particular receptor utilised

    Ion-induced nucleation in polar one-component fluids

    Get PDF
    We present a Ginzburg-Landau theory of ion-induced nucleation in a gas phase of polar one-component fluids, where a liquid droplet grows with an ion at its center. By calculating the density profile around an ion, we show that the solvation free energy is larger in gas than in liquid at the same temperature on the coexistence curve. This difference much reduces the nucleation barrier in a metastable gas.Comment: 9 pagers, 9 figures, to be published in J. Chem. Phy

    Capillary-gravity wave resistance in ordinary and magnetic fluids

    Get PDF
    Wave resistance is the drag force associated to the emission of waves by a moving disturbance at a fluid free surface. In the case of capillary-gravity waves it undergoes a transition from zero to a finite value as the speed of the disturbance is increased. For the first time an experiment is designed in order to obtain the wave resistance as a function of speed. The effect of viscosity is explored, and a magnetic fluid is used to extend the available range of critical speeds. The threshold values are in good agreement with the proposed theory. Contrary to the theoretical model, however, the measured wave resistance reveals a non monotonic speed dependence after the threshold.Comment: 12 pages, 4 figures, 1 table, submitted to Physical Review Letter

    Large-Scale Magnetic-Field Generation by Randomly Forced Shearing Waves

    Full text link
    A rigorous theory for the generation of a large-scale magnetic field by random non-helically forced motions of a conducting fluid combined with a linear shear is presented in the analytically tractable limit of low Rm and weak shear. The dynamo is kinematic and due to fluctuations in the net (volume-averaged) electromotive force. This is a minimal proof-of-concept quasilinear calculation aiming to put the shear dynamo, a new effect recently found in numerical experiments, on a firm theoretical footing. Numerically observed scalings of the wavenumber and growth rate of the fastest growing mode, previously not understood, are derived analytically. The simplicity of the model suggests that shear dynamo action may be a generic property of sheared magnetohydrodynamic turbulence.Comment: Paper substantially rewritten, results changed (relative to v1). Revised versio

    Herschel/HIFI discovery of interstellar chloronium (H_2Cl^+)

    Get PDF
    We report the first detection of chloronium, H_2Cl^+, in the interstellar medium, using the HIFI instrument aboard the Herschel Space Observatory. The 2_(12)−1_(01) lines of ortho-H^(35)_2 Cl^+ and ortho-H^(37)_2 Cl^+ are detected in absorption towards NGC 6334I, and the 1_(11)−0_(00) transition of para-H^(35)_2 Cl^+ is detected in absorption towards NGC 6334I and Sgr B2(S). The H_2Cl^+ column densities are compared to those of the chemically-related species HCl. The derived HCl/H_2Cl^+ column density ratios, ~1–10, are within the range predicted by models of diffuse and dense photon dominated regions (PDRs). However, the observed H_2Cl^+ column densities, in excess of 10^(13) cm^(−2), are significantly higher than the model predictions. Our observations demonstrate the outstanding spectroscopic capabilities of HIFI for detecting new interstellar molecules and providing key constraints for astrochemical models

    Universal method to extract the average electron spin relaxation in organic semiconductors from muonium ALC resonances

    Full text link
    Muon spin spectroscopy and in particular the avoid level crossing (ALC) technique is a sensitive probe of electron spin relaxation (eSR) in organic semiconductors. In complex ALC spectra, eSR can be challenging to extract, as it requires the modelling of overlapping ALCs, where covariance between parameters can result in significant uncertainties. Here we demonstrate a general method to extract eSR rate, which is independent on the number of ALCs resonances present, whether they overlap or not, and what the muonium hyperfine (isotropic and anisotropic) parameters are. This can then be used to extract an accurate value for eSR rate and as guidance for undertaking experiments efficientl

    Variational formulation of Eisenhart's unified theory

    Full text link
    Eisenhart's classical unified field theory is based on a non-Riemannian affine connection related to the covariant derivative of the electromagnetic field tensor. The sourceless field equations of this theory arise from vanishing of the torsion trace and the symmetrized Ricci tensor. We formulate Eisenhart's theory from the metric-affine variational principle. In this formulation, a Lagrange multiplier constraining the torsion becomes the source for the Maxwell equations.Comment: 7 pages; published versio
    corecore