282 research outputs found

    Intraindividual Stepping Reaction Time Variability Predicts Falls in Older Adults With Mild Cognitive Impairment

    Get PDF
    Background: Reaction time measures have considerable potential to aid neuropsychological assessment in a variety of health care settings. One such measure, the intraindividual reaction time variability (IIV), is of particular interest as it is thought to reflect neurobiological disturbance. IIV is associated with a variety of age-related neurological disorders, as well as gait impairment and future falls in older adults. However, although persons diagnosed with Mild Cognitive Impairment (MCI) are at high risk of falling, the association between IIV and prospective falls is unknown. Methods: We conducted a longitudinal cohort study in cognitively intact (n = 271) and MCI (n = 154) community-dwelling adults aged 70–90 years. IIV was assessed through a variety of measures including simple and choice hand reaction time and choice stepping reaction time tasks (CSRT), the latter administered as a single task and also with a secondary working memory task. Results: Logistic regression did not show an association between IIV on the hand-held tasks and falls. Greater IIV in both CSRT tasks, however, did significantly increase the risk of future falls. This effect was specific to the MCI group, with a stronger effect in persons exhibiting gait, posture, or physiological impairment. Conclusions: The findings suggest that increased stepping IIV may indicate compromised neural circuitry involved in executive function, gait, and posture in persons with MCI increasing their risk of falling. IIV measures have potential to assess neurobiological disturbance underlying physical and cognitive dysfunction in old age, and aid fall risk assessment and routine care in community and health care settings

    Neutrophils from Both Susceptible and Resistant Mice Efficiently Kill Opsonized \u3cem\u3eListeria monocytogenes\u3c/em\u3e

    Get PDF
    Inbred mouse strains differ in their susceptibility to infection with the facultative intracellular bacterium Listeria monocytogenes, largely due to delayed or deficient innate immune responses. Previous antibody depletion studies suggested that neutrophils (polymorphonuclear leukocytes [PMN]) were particularly important for clearance in the liver, but the ability of PMN from susceptible and resistant mice to directly kill L. monocytogenes has not been examined. In this study, we showed that PMN infiltrated the livers of BALB/c/By/J (BALB/c) and C57BL/6 (B6) mice in similar numbers and that both cell types readily migrated toward leukotriene B4 in an in vitro chemotaxis assay. However, CFU burdens in the liver were significantly higher in BALB/c mice than in other strains, suggesting that PMN in the BALB/c liver might not be able to clear L. monocytogenes as efficiently as B6 PMN. Unprimed PMN harvested from either BALB/c or B6 bone marrow killed L. monocytogenes directly ex vivo, and pretreatment with autologous serum significantly enhanced killing efficiency for both. L. monocytogenes were internalized within 10 min and rapidly triggered intracellular production of reactive oxygen species in a dose-dependent manner. However, PMN from gp91phox-deficient mice also readily killed L. monocytogenes, which suggested that nonoxidative killing mechanisms may be sufficient for bacterial clearance. Together, these results indicate that there is not an intrinsic defect in the ability of PMN from susceptible BALB/c mice to kill L. monocytogenes and further suggest that if PMN function is impaired in BALB/c mice, it is likely due to locally produced modulating factors present in the liver during infection

    Role of Inn1 and its interactions with Hof1 and Cyk3 in promoting cleavage furrow and septum formation in S. cerevisiae

    Get PDF
    Cytokinesis requires coordination of actomyosin ring (AMR) contraction with rearrangements of the plasma membrane and extracellular matrix. In Saccharomyces cerevisiae, new membrane, the chitin synthase Chs2 (which forms the primary septum [PS]), and the protein Inn1 are all delivered to the division site upon mitotic exit even when the AMR is absent. Inn1 is essential for PS formation but not for Chs2 localization. The Inn1 C-terminal region is necessary for localization, and distinct PXXP motifs in this region mediate functionally important interactions with SH3 domains in the cytokinesis proteins Hof1 (an F-BAR protein) and Cyk3 (whose overexpression can restore PS formation in inn1Δ cells). The Inn1 N terminus resembles C2 domains but does not appear to bind phospholipids; nonetheless, when overexpressed or fused to Hof1, it can provide Inn1 function even in the absence of the AMR. Thus, Inn1 and Cyk3 appear to cooperate in activating Chs2 for PS formation, which allows coordination of AMR contraction with ingression of the cleavage furrow

    Augmented visual feedback of movement performance to enhance walking recovery after stroke : study protocol for a pilot randomised controlled trial

    Get PDF
    Increasing evidence suggests that use of augmented visual feedback could be a useful approach to stroke rehabilitation. In current clinical practice, visual feedback of movement performance is often limited to the use of mirrors or video. However, neither approach is optimal since cognitive and self-image issues can distract or distress patients and their movement can be obscured by clothing or limited viewpoints. Three-dimensional motion capture has the potential to provide accurate kinematic data required for objective assessment and feedback in the clinical environment. However, such data are currently presented in numerical or graphical format, which is often impractical in a clinical setting. Our hypothesis is that presenting this kinematic data using bespoke visualisation software, which is tailored for gait rehabilitation after stroke, will provide a means whereby feedback of movement performance can be communicated in a more meaningful way to patients. This will result in increased patient understanding of their rehabilitation and will enable progress to be tracked in a more accessible way. The hypothesis will be assessed using an exploratory (phase II) randomised controlled trial. Stroke survivors eligible for this trial will be in the subacute stage of stroke and have impaired walking ability (Functional Ambulation Classification of 1 or more). Participants (n = 45) will be randomised into three groups to compare the use of the visualisation software during overground physical therapy gait training against an intensity-matched and attention-matched placebo group and a usual care control group. The primary outcome measure will be walking speed. Secondary measures will be Functional Ambulation Category, Timed Up and Go, Rivermead Visual Gait Assessment, Stroke Impact Scale-16 and spatiotemporal parameters associated with walking. Additional qualitative measures will be used to assess the participant's experience of the visual feedback provided in the study. Results from the trial will explore whether the early provision of visual feedback of biomechanical movement performance during gait rehabilitation demonstrates improved mobility outcomes after stroke and increased patient understanding of their rehabilitation

    The Hide-and-Seek of Grain Boundaries from Moire Pattern Fringe of Two-Dimensional Graphene

    Get PDF
    Grain boundaries (GBs) commonly exist in crystalline materials and affect various properties of materials. The facile identification of GBs is one of the significant requirements for systematical study of polycrystalline materials including recently emerging two-dimensional materials. Previous observations of GBs have been performed by various tools including high resolution transmission electron microscopy. However, a method to easily identify GBs, especially in the case of low-angle GBs, has not yet been well established. In this paper, we choose graphene bilayers with a GB as a model system and investigate the effects of interlayer rotations to the identification of GBs. We provide a critical condition between adjacent moire fringe spacings, which determines the possibility of GB recognition. In addition, for monolayer graphene with a grain boundary, we demonstrate that low-angle GBs can be distinguished easily by inducing moire patterns deliberately with an artificial reference overlayopen0

    PEG-Albumin Plasma Expansion Increases Expression of MCP-1 Evidencing Increased Circulatory Wall Shear Stress: An Experimental Study

    Get PDF
    Treatment of blood loss with plasma expanders lowers blood viscosity, increasing cardiac output. However, increased flow velocity by conventional plasma expanders does not compensate for decreased viscosity in maintaining vessel wall shear stress (WSS), decreasing endothelial nitric oxide (NO) production. A new type of plasma expander using polyethylene glycol conjugate albumin (PEG-Alb) causes supra-perfusion when used in extreme hemodilution and is effective in treating hemorrhagic shock, although it is minimally viscogenic. An acute 40% hemodilution/exchange-transfusion protocol was used to compare 4% PEG-Alb to Ringer’s lactate, Dextran 70 kDa and 6% Hetastarch (670 kDa) in unanesthetized CD-1 mice. Serum cytokine analysis showed that PEG-Alb elevates monocyte chemotactic protein-1 (MCP-1), a member of a small inducible gene family, as well as expression of MIP-1α, and MIP-2. MCP-1 is specific to increased WSS. Given the direct link between increased WSS and production of NO, the beneficial resuscitation effects due to PEG-Alb plasma expansion appear to be due to increased WSS through increased perfusion and blood flow rather than blood viscosity
    corecore