36 research outputs found
Interaction between Calpain 5, Peroxisome proliferator-activated receptor-gamma and Peroxisome proliferator-activated receptor-delta genes: a polygenic approach to obesity
<p>Abstract</p> <p>Context</p> <p>Obesity is a multifactorial disorder, that is, a disease determined by the combined effect of genes and environment. In this context, polygenic approaches are needed.</p> <p>Objective</p> <p>To investigate the possibility of the existence of a crosstalk between the <it>CALPAIN 10 </it>homologue <it>CALPAIN 5 </it>and nuclear receptors of the peroxisome proliferator-activated receptors family.</p> <p>Design</p> <p>Cross-sectional, genetic association study and gene-gene interaction analysis.</p> <p>Subjects</p> <p>The study sample comprise 1953 individuals, 725 obese (defined as body mass index ≥ 30) and 1228 non obese subjects.</p> <p>Results</p> <p>In the monogenic analysis, only the peroxisome proliferator-activated receptor delta (<it>PPARD</it>) gene was associated with obesity (OR = 1.43 [1.04–1.97], p = 0.027). In addition, we have found a significant interaction between <it>CAPN5 </it>and <it>PPARD </it>genes (p = 0.038) that reduces the risk for obesity in a 55%.</p> <p>Conclusion</p> <p>Our results suggest that <it>CAPN5 </it>and <it>PPARD </it>gene products may also interact in vivo.</p
Evaluation of turbulent dissipation rate retrievals from Doppler Cloud Radar
Turbulent dissipation rate retrievals from cloud radar Doppler velocity measurements are evaluated using independent, in situ observations in Arctic stratocumulus clouds. In situ validation data sets of dissipation rate are derived using sonic anemometer measurements from a tethered balloon and high frequency pressure variation observations from a research aircraft, both flown in proximity to stationary, ground-based radars. Modest biases are found among the data sets in particularly low- or high-turbulence regimes, but in general the radar-retrieved values correspond well with the in situ measurements. Root mean square differences are typically a factor of 4-6 relative to any given magnitude of dissipation rate. These differences are no larger than those found when comparing dissipation rates computed from tetheredballoon and meteorological tower-mounted sonic anemometer measurements made at spatial distances of a few hundred meters. Temporal lag analyses suggest that approximately half of the observed differences are due to spatial sampling considerations, such that the anticipated radar-based retrieval uncertainty is on the order of a factor of 2-3. Moreover, radar retrievals are clearly able to capture the vertical dissipation rate structure observed by the in situ sensors, while offering substantially more information on the time variability of turbulence profiles. Together these evaluations indicate that radar-based retrievals can, at a minimum, be used to determine the vertical structure of turbulence in Arctic stratocumulus clouds
Radon and material radiopurity assessment for the NEXT double beta decay experiment
The Neutrino Experiment with a Xenon TPC (NEXT), intended to investigate the
neutrinoless double beta decay using a high-pressure xenon gas TPC filled with
Xe enriched in 136Xe at the Canfranc Underground Laboratory in Spain, requires
ultra-low background conditions demanding an exhaustive control of material
radiopurity and environmental radon levels. An extensive material screening
process is underway for several years based mainly on gamma-ray spectroscopy
using ultra-low background germanium detectors in Canfranc but also on mass
spectrometry techniques like GDMS and ICPMS. Components from shielding,
pressure vessel, electroluminescence and high voltage elements and energy and
tracking readout planes have been analyzed, helping in the final design of the
experiment and in the construction of the background model. The latest
measurements carried out will be presented and the implication on NEXT of their
results will be discussed. The commissioning of the NEW detector, as a first
step towards NEXT, has started in Canfranc; in-situ measurements of airborne
radon levels were taken there to optimize the system for radon mitigation and
will be shown too.Comment: Proceedings of the Low Radioactivity Techniques 2015 workshop
(LRT2015), Seattle, March 201
NEXT-100 Technical Design Report (TDR). Executive Summary
In this Technical Design Report (TDR) we describe the NEXT-100 detector that
will search for neutrinoless double beta decay (bbonu) in Xe-136 at the
Laboratorio Subterraneo de Canfranc (LSC), in Spain. The document formalizes
the design presented in our Conceptual Design Report (CDR): an
electroluminescence time projection chamber, with separate readout planes for
calorimetry and tracking, located, respectively, behind cathode and anode. The
detector is designed to hold a maximum of about 150 kg of xenon at 15 bar, or
100 kg at 10 bar. This option builds in the capability to increase the total
isotope mass by 50% while keeping the operating pressure at a manageable level.
The readout plane performing the energy measurement is composed of Hamamatsu
R11410-10 photomultipliers, specially designed for operation in low-background,
xenon-based detectors. Each individual PMT will be isolated from the gas by an
individual, pressure resistant enclosure and will be coupled to the sensitive
volume through a sapphire window. The tracking plane consists in an array of
Hamamatsu S10362-11-050P MPPCs used as tracking pixels. They will be arranged
in square boards holding 64 sensors (8 times8) with a 1-cm pitch. The inner
walls of the TPC, the sapphire windows and the boards holding the MPPCs will be
coated with tetraphenyl butadiene (TPB), a wavelength shifter, to improve the
light collection.Comment: 32 pages, 22 figures, 5 table
Radiopurity control in the NEXT-100 double beta decay experiment: procedures and initial measurements
We have investigated the possibility of calibrating the PMTs of scintillation detectors, using the primary scintillation produced by X-rays to induce single photoelectron response of the PMT. The high-energy tail of this response, can be approximated to an exponential function, under some conditions. In these cases, it is possible to determine the average gain for each PMT biasing voltage from the inverse of the exponent of the exponential fit to the tail, which can be done even if the background and/or noise cover-up most of the distribution. We have compared our results with those obtained by the commonly used single electron response (SER) method, which uses a LED to induce a single photoelectron response of the PMT and determines the peak position of such response, relative to the pedestal peak (the electronic noise peak, which corresponds to 0 photoelectrons). The results of the exponential fit method agree with those obtained by the SER method when the average number of photoelectrons reaching the first dynode per light/scintillation pulse is around 1.0. The SER method has higher precision, while the exponential fit method has the advantage of being useful in situations where the PMT is already in situ, being difficult or even impossible to apply the SER method, e.g. in sealed scintillator/PMT devices
Present Status and Future Perspectives of the NEXT Experiment
NEXT is an experiment dedicated to neutrinoless double beta decay searches in xenon. The detector is a TPC, holding 100 kg of high-pressure xenon enriched in the 136Xe isotope. It is under construction in the Laboratorio Subterráneo de Canfranc in Spain, and it will begin operations in 2015. The NEXT detector concept provides an energy resolutionbetter than 1% FWHM and a topological signal that can be used to reduce the background. Furthermore, the NEXT technology can be extrapolated to a 1 ton-scale experiment
Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm
We report the performance of a 10 atm Xenon/trimethylamine time projection chamber (TPC) for the detection of X-rays (30 keV) and gamma-rays (0.511-1.275 MeV) in conjunction with the accurate tracking of the associated electrons. When operated at such a high pressure and in similar to 1%-admixtures, trimethylamine (TMA) endows Xenon with an extremely low electron diffusion (1.3 +/- 0.13 mm-sigma (longitudinal), 0.95 +/- 0.20 mm-sigma (transverse) along 1 m drift) besides forming a convenient Penning-Fluorescent' mixture. The TPC, that houses 1.1 kg of gas in its fiducial volume, operated continuously for 100 live-days in charge amplification mode. The readout was performed through the recently introduced microbulk Micromegas technology and the AFTER chip, providing a 3D voxelization of 8 mm x 8 mm x 1.2 mm for approximately 10 cm/MeV-long electron tracks. Resolution in energy (epsilon) at full width half maximum (R) inside the fiducial volume ranged from R = 14.6% (30 keV) to R = 4.6% (1.275 MeV).
This work was developed as part of the R&D program of the NEXT collaboration for future detector upgrades in the search of the neutrino-less double beta decay (beta beta 0 nu) in Xe-136, specifically those based on novel gas mixtures. Therefore we ultimately focus on the calorimetric and topological properties of the reconstructed MeV-electron tracks. In particular, the obtained energy resolution has been decomposed in its various contributions and improvements towards achieving the R =1.4%root MeV/epsilon levels obtained in small sensors are discussedThe NEXT collaboration acknowledges funding support from the following agencies and institutions: European Research Council under Advanced Grant 339787-NEXT and Starting Grant 240054-TREX, Spanish Ministerio de Economia y Competitividad under grants Consolider-Ingenio 2010 CSD2008-0037 (CUP) and CSD2007-00042 (CPAN), contracts FPA2008-03456 and FPA2009-13697; Portuguese Fundacao para a Ciencia e a Tecnologia; European FEDER under grant PPTDC/FIS/103860/2008; US Department Of Energy under contract DE-AC02-05CH11231.Gonzalez Diaz, D.; Álvarez Puerta, V.; Borges, FIG.; Camargo, M.; Carcel, S.; Cebrian, S.; Cervera, A.... (2015). Accurate gamma and MeV-electron track reconstruction with an ultra-low diffusion Xenon/TMA TPC at 10 atm. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 804:8-24. https://doi.org/10.1016/j.nima.2015.08.033S82480
Operation and first results of the NEXT-DEMO prototype using a silicon photomultiplier tracking array
NEXT-DEMO is a high-pressure xenon gas TPC which acts as a technological test-bed and demonstrator for the NEXT-100 neutrinoless double beta decay experiment. In its current configuration the apparatus fully implements the NEXT-100 design concept. This is an asymmetric TPC, with an energy plane made of photomultipliers and a tracking plane made of silicon photomultipliers (SiPM) coated with TPB. The detector in this new configuration has been used to reconstruct the characteristic signature of electrons in dense gas, demonstrating the ability to identify the MIP and ''blob'' regions. Moreover, the SiPM tracking plane allows for the definition of a large fiducial region in which an excellent energy resolution of 1.82% FWHM at 511 keV has been measured (a value which extrapolates to 0.83% at the xenon Qββ)