335 research outputs found

    Gauge approach to the specific heat in the normal state of cuprates

    Full text link
    Many experimental features of the electronic specific heat and entropy of high Tc cuprates in the normal state, including the nontrivial temperature dependence of the specific heat coefficient and negative intercept of the extrapolated entropy to T=0 for underdoped cuprates, are reproduced using the spin-charge gauge approach to the t-J model. The entropy turns out to be basically due to fermionic excitations, but with a temperature dependence of the specific heat coefficient controlled by fluctuations of a gauge field coupling them to gapful bosonic excitations. In particular the negative intercept of the extrapolated entropy at T=0 in the pseudogap ``phase'' is attributed to the scalar component of the gauge field, which implements the local no-double occupancy constraint.Comment: 5 pages, 5 figure
    • …
    corecore