441 research outputs found

    Role of In-Situ Testing in Geotechnical Earthquake Engineering

    Get PDF
    The available in situ testing techniques of special relevance in Geotechnical Earthquake Engineering are subject to a synthetic review in the light of the general framework of soil stress-strain behavior. Especial attention is devoted to the recent innovations and current capabilities of in situ testing methods to assess the shear modulus G and damping ratio D. The determination of the undrained steady state shear strength via penetration and seismic tests is also discussed

    Consumer Satisfaction with Telerehabilitation Service Provision of Alternative Computer Access and Augmentative and Alternative Communication

    Get PDF
    Telerehabilitation (TR) services for assistive technology evaluation and training have the potential to reduce travel demands for consumers and assistive technology professionals while allowing evaluation in more familiar, salient environments for the consumer. Sixty-five consumers received TR services for augmentative and alternative communication or alternative computer access, and consumer satisfaction was compared with twenty-eight consumers who received exclusively in-person services. TR recipients rated their TR services at a median of 6 on a 6-point Likert scale TR satisfaction questionnaire, although individual responses did indicate room for improvement in the technology. Overall satisfaction with AT services was rated highly by both in-person (100% satisfaction) and TR (99% satisfaction) service recipients

    PREPARATION AND CHARACTERIZATION OF BIOPOLYMERIC POROUS STRUCTURES FOR ADVANCED APPLICATIONS

    Get PDF
    Porous biopolymers received an increasing academic and industrial interest finding application in several fields such as tissue engineering, bioprocess intensification and waste removal. Tissue engineering combines the knowledge of materials science and bioengineering in order to develop structures able to substitute and restore the normal function of injured or diseased tissues. In this context, polymeric 3D or 2D scaffolds are widely investigated as temporary cell guidance during the tissue restore. Porous biomaterials can offer a versatile and cost effective way for immobilization of filamentous microorganisms in submerged fermentation processes for the production of biologically active compounds. Engineered biopolymeric membranes can lead to an increment of cell densities, improved gas\u2013liquid mass transfer, stimulate microbial metabolism, protect cell from unfavorable agents, and preserve their physiological activity thus resulting in a net increment of bio-productivity. Finally, in the recent years, much effort has been dedicated to the development of sustainable and inexpensive sorbent materials for oil/water separation based on natural fibers, which combine attractive properties such as renewability, biodegradability, high specific strength and modulus, low density and environmental friendliness. In this context, porous bio-materials can act as a multifunctional devices able a combining the properties of sorbents materials and that of the organic carrier able to enhance the activity and viability of oil-degrading cells for bioremediation

    Chemicals on plant surfaces as a heretofore unrecognized, but ecologically informative, class for investigations into plant defence

    Get PDF
    ABSTRACT Plants produce and utilize a great diversity of chemicals for a variety of physiological and ecological purposes. Many of these chemicals defend plants against herbivores, pathogens and competitors. The location of these chemicals varies within the plant, some are located entirely within plant tissues, others exist in the air-(or water-) space around plants, and still others are secreted onto plant surfaces as exudates. I argue herein that the location of a given defensive chemical has profound implications for its ecological function; specifically, I focus on the characteristics of chemical defences secreted onto plant surfaces. Drawing from a broad literature encompassing ecology, evolution, taxonomy and physiology, I found that these external chemical defences (ECDs) are common and widespread in plants and algae; hundreds of examples have been detailed, yet they are not delineated as a separate class from internal chemical defences (ICDs). I propose a novel typology for ECDs and, using existing literature, explore the ecological consequences of the hypothesized unique characteristics of ECDs. The axis of total or proportional investment in ECDs versus ICDs should be considered as one axis of investment by a plant, in the same way as quantitative versus qualitative chemical defences or induced versus constitutive defences is considered. The ease of manipulating ECDs in many plant systems presents a powerful tool to help test plant defence theory (e.g. optimal defence). The framework outlined here integrates various disciplines of botany and ecology and suggests a need for further examinations of exudates in a variety of contexts, as well as recognition of the effects of within-plant localization of defences

    Blue biotechnology: oil bioremediation using hydrocarbon-degrading bacteria immobilized on biodegradable membranes

    Get PDF
    A novel bioremediation system to clean up oil contaminated water was developed combining hydrocarbon (HC) degrading bacteria immobilized and polylactic acid (PLA) or polycaprolactone (PCL) membranes prepared by electrospinning. The bioremediation efficiency was tested on crude oil using highly performant HC degrading bacterial strains isolated from marine and soil environments. The membrane morphology, the microbial adhesion and proliferation were evaluated using scanning electron microscopy (SEM). The SEM analysis highlighted that the fibers of the electrospun mats were in nanoscale with a similar diameter size distribution. The electrospun membranes exhibited high oil absorption capacity (q): approximately q = 40 g/g for PLA and q = 20 g/g for PCL. The bacterial strains were able to attach to the PLA and PCL membranes after 48h, reaching high proliferation and biofilm formation within the whole structure in 5 days. The biodegradation efficiency of the bacteria-membrane systems was tested by GC-FID analysis and compared with planktonic cells after 5 and 10 days incubation. The bacterial immobilization is a promoting factor for biodegradation and a new tool to be developed for bioremediation of aquatic systems

    Leukocyte Rheology Before and After Chemotactic Activation in some Venous Diseases

    Get PDF
    AbstractObjective: to evaluate leukocyte rheology, polymorphonuclear leukocyte (PMN) membrane fluidity and cytosolic Ca2+ concentration in subjects with post-phlebitic leg syndrome (PPS) and acute deep-venous leg thrombosis (DVT). Subjects: twenty-two subjects with leg PPS and 14 subjects with leg DVT. Methods: we evaluated the leukocyte filtration (unfractionated, mononuclear cells (MN) and PMN), the PMN membrane fluidity and the PMN cytosolic Ca2+ concentration. Subsequently, we evaluated the same PMN variables after in vitro chemotactic activation with 4-phorbol 12-myristate 13-acetate (PMA) and N -formyl-methionyl-leucyl-phenylalanine (fMLP). Results: at baseline we observed a significant difference in the filtration variables of unfractionated and MN cells and in PMN cytosolic Ca2+ concentration. After activation, in normal subjects and subjects with PPS and DVT, a significant variation in PMN filtration at 5 and 15 minutes was evident. In normal subjects, no variation was present in PMN membrane fluidity or cytosolic Ca2+ concentration after activation. In subjects with PPS and DVT, we found a decrease in PMN membrane fluidity and an increase in PMN cytosolic Ca2+ concentration. After PMN activation (at 5 and 15 min) Δ% of IRFR distinguished normal subjects from subjects with PPS and DVT, while no difference was found in Δ% of membrane fluidity or cytosolic Ca2+ concentration. Conclusions: there is a functional alteration of leukocytes in these patients whose mechanisms are not yet clear

    Solution-based processing for scaffold fabrication in tissue engineering applications: A brief review

    Get PDF
    The fabrication of 3D scaffolds is under wide investigation in tissue engineering (TE) because of its incessant development of new advanced technologies and the improvement of traditional processes. Currently, scientific and clinical research focuses on scaffold characterization to restore the function of missing or damaged tissues. A key for suitable scaffold production is the guarantee of an interconnected porous structure that allows the cells to grow as in native tissue. The fabrication techniques should meet the appropriate requirements, including feasible reproducibility and time-and cost-effective assets. This is necessary for easy processability, which is associated with the large range of biomaterials supporting the use of fabrication technologies. This paper presents a review of scaffold fabrication methods starting from polymer solutions that provide highly porous structures under controlled process parameters. In this review, general information of solution-based technologies, including freeze-drying, thermally or diffusion induced phase separation (TIPS or DIPS), and electrospinning, are presented, along with an overview of their technological strategies and applications. Furthermore, the differences in the fabricated constructs in terms of pore size and distribution, porosity, morphology, and mechanical and biological properties, are clarified and critically reviewed. Then, the combination of these techniques for obtaining scaffolds is described, offering the advantages of mimicking the unique architecture of tissues and organs that are intrinsically difficult to design

    Use of biochar as filler for biocomposite blown films: Structure-processing-properties relationships

    Get PDF
    In this work, biocomposite blown films based on poly(butylene adipate-co-terephthalate) (PBAT) as biopolymeric matrix and biochar (BC) as filler were successfully fabricated. The materials were subjected to a film-blowing process after being compounded in a twin-screw extruder. The preliminary investigations conducted on melt-mixed PBAT/BC composites allowed PBAT/BC 5% and PBAT/BC 10% to be identified as the most appropriate formulations to be processed via film blowing. The blown films exhibited mechanical performances adequate for possible application as film for packaging, agricultural, and compost bags. The addition of BC led to an improvement of the elastic modulus, still maintaining high values of deformation. Water contact angle measurements revealed an increase in the hydrophobic behavior of the biocomposite films compared to PBAT. Additionally, accelerated degradative tests monitored by tensile tests and spectroscopic analysis revealed that the filler induced a photo-oxidative resistance on PBAT by delaying the degradation phenomena

    Blue biotechnology: enhancement of bioremediation using bacterial biofilms on biodegradable scaffolds

    Get PDF
    Petroleum hydrocarbons are still the most threatening environmental pollutants. A promising non invasive and low-cost technology for the treatment of contaminated sites is based on bioremediation by biodegrading microorganism endowed with catabolic ability towards oil and derivatives. New methods are needed to enhance and optimize natural biodegradation, such as the immobilization of hydrocarbons degraders in many types of supports. We developed a scaffold-bacteria bioremediation system to clean up oil contamination based on degradable 3D scaffolds. The polycaprolactone component is biodegradable, produced in the melt, i.e. at low cost and without the use of toxic solvents. The biofilm is made of highly performing HC-degrading bacteria such as the marine hydrocarbonoclastic bacteria (HCB) (1) or solid n-alkane degrading Actinobacteria (2, 3). The bacterial biofilm is observed within the whole structure of scaffold using scanning electron microscopy. The bioremediation efficiency of such systems was tested on crude oil by GC-FID analysis and compared whit planktonic cells. The biofilms formation was a promoting factor for biodegradation showing hydrocarbon removal up to 70% and 15% more in respect to the planktonic cells. Increasing availability of the contaminants and a better interaction between the hydrophobic substrate and the bacterial cells resulted in developing the degradation rate. Biofilm-mediated bioremediation is a new tool to be developed for bioremediation of acquatic system

    PBAT based composites reinforced with microcrystalline cellulose obtained from softwood almond shells

    Get PDF
    This study explores the processability, mechanical, and thermal properties of biocompostable composites based on poly (butylene adipate-co-terephthalate) (PBAT) as polymer matrix and microcrystalline cellulose (MCC) derived from softwood almond (Prunus dulcis) shells (as-MCC) as filler at two different weight concentration, i.e., 10 wt% and 20 wt%. The materials were processed by melt mixing and a commercial MCC (c-MCC) was used as filler comparison. The fibrillar shape of as-MCC particles was found to change the rheological behavior of PBAT, particularly at the highest concentration. The melt mixing processing allowed obtaining a uniform dispersion of both kinds of fillers, slightly reducing the L/D ratio of as-MCC fibers. The as-MCC particles led to a higher increase of the elastic modulus of PBAT if compared to the c-MCC counterparts. Both the MCC fillers caused a drastic reduction of the elongation at break, although it was higher than 120% also at the highest filler concentrations. DSC analysis revealed that both MCC fillers poorly affected the matrix crystallinity, although as-MCC induced a slight PBAT crystallinity increase from 8.8% up to 10.9% for PBAT/as-MCC 20%. Therefore, this work demonstrates the great potential of MCC particles derived from almond shells as filler for biocompostable composites fabrication
    • …
    corecore