49,097 research outputs found
Microscopic origin of the next generation fractional quantum Hall effect
Most of the fractions observed to date belong to the sequences and , and integers, understood as the familiar
{\em integral} quantum Hall effect of composite fermions. These sequences fail
to accommodate, however, many fractions such as and 5/13, discovered
recently in ultra-high mobility samples at very low temperatures. We show that
these "next generation" fractional quantum Hall states are accurately described
as the {\em fractional} quantum Hall effect of composite fermions
NuSTAR Observations of G11.2–0.3
We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature
More on Meta-Stable Brane Configuration
We describe the intersecting brane configuration of type IIA string theory
corresponding to the meta-stable nonsupersymmetric vacua in four dimensional
N=1 supersymmetric SU(N_c) gauge theory with an antisymmetric flavor, a
conjugate symmetric flavor, eight fundamental flavors, m_f fundamental flavors
and m_f antifundamental flavors. This is done by analyzing the N=1
supersymmetric SU(2m_f-N_c+4) magnetic gauge theory with dual matters and the
corresponding dual superpotential.Comment: 20 pp, 3 figures; Pages 11,12, and 14 improved; to appear in CQ
SUSY signals at HERA in the no-scale flipped SU(5) supergravity model
Sparticle production and detection at HERA are studied within the recently
proposed no-scale flipped supergravity model. Among the various
reaction channels that could lead to sparticle production at HERA, only the
following are within its limit of sensitivity in this model: , where are the
two lightest neutralinos and is the lightest chargino. We study the
elastic and deep-inelastic contributions to the cross sections using the
Weizs\"acker-Williams approximation. We find that the most promising
supersymmetric production channel is right-handed selectron ()
plus first neutralino (), with one hard electron and missing energy
signature. The channel leads to comparable rates but also
allows jet final states. A right-handedly polarized electron beam at HERA would
shut off the latter channel and allow preferentially the former one. With an
integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI
lower bounds on by
\approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with
LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an
excellent supersymmetry detector which can provide indirect information about
the sparticle masses by measuring the leading proton longitudinal momentum
distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or
separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1
Quintessence and cosmic acceleration
A cosmological model with perfect fluid and self-interacting quintessence
field is considered in the framework of the spatially flat
Friedmann-Robertson-Walker (FRW) geometry. By assuming that all physical
quantities depend on the volume scale factor of the Universe, the general
solution of the gravitational field equations can be expressed in an exact
parametric form. The quintessence field is a free parameter. With an
appropriate choice of the scalar field a class of exact solutions is obtained,
with an exponential type scalar field potential fixed via the gravitational
field equations. The general physical behavior of the model is consistent with
the recent cosmological scenario favored by supernova Type Ia observations,
indicating an accelerated expansion of the Universe.Comment: 6 pages, 3 figures, to appear in Int. J. Mod. Phys.
Scaling Relations for Gaps in Fractional Quantum Hall States
The microscopic approach of Murthy and Shankar, which has recently been used
to calculate the transport gaps of quantum Hall states with fractions
p/(2ps+1), also implies scaling relations between gaps within a single sequence
(fixed s) as well as between gaps of corresponding states in different
sequences. This work tests these relations for a system of electrons in the
lowest Landau level interacting with a model potential cutoff at high momenta
due to sample thickness
Detecting an Invisibly Decaying Higgs Boson at a Hadron Supercollider
We demonstrate that an invisibly decaying Higgs boson with Standard Model
coupling strength to top--anti-top can be detected at the LHC for masses up to
about 250 GeV.Comment: 7 pages, requires phyzzx.tex and tables.tex, revised to convert
results from SSC to LHC and include additional top quark mass cases, full
postscript file including embedded figure available via anonymous ftp at
ucdhep.ucdavis.edu as [anonymous.gunion]hinvisible_revised.ps, preprint
UCD-93-2
- …