49,097 research outputs found

    Microscopic origin of the next generation fractional quantum Hall effect

    Full text link
    Most of the fractions observed to date belong to the sequences ν=n/(2pn±1)\nu=n/(2pn\pm 1) and ν=1−n/(2pn±1)\nu=1-n/(2pn\pm 1), nn and pp integers, understood as the familiar {\em integral} quantum Hall effect of composite fermions. These sequences fail to accommodate, however, many fractions such as ν=4/11\nu=4/11 and 5/13, discovered recently in ultra-high mobility samples at very low temperatures. We show that these "next generation" fractional quantum Hall states are accurately described as the {\em fractional} quantum Hall effect of composite fermions

    NuSTAR Observations of G11.2–0.3

    Get PDF
    We present in this paper the hard X-ray view of the pulsar wind nebula in G11.2−0.3 and its central pulsar powered pulsar J1811−1925 as seen by NuSTAR. We complement the data with Chandra for a more complete picture and confirm the existence of a hard, power-law component in the shell with photon index Γ = 2.1 ± 0.1, which we attribute to synchrotron emission. Our imaging observations of the shell show a slightly smaller radius at higher energies, consistent with Chandra results, and we find shrinkage as a function of increased energy along the jet direction, indicating that the electron outflow in the PWN may be simpler than that seen in other young PWNe. Combining NuSTAR with INTEGRAL, we find that the pulsar spectrum can be fit by a power law with Γ = 1.32 ± 0.07 up to 300 keV without evidence of curvature

    More on Meta-Stable Brane Configuration

    Get PDF
    We describe the intersecting brane configuration of type IIA string theory corresponding to the meta-stable nonsupersymmetric vacua in four dimensional N=1 supersymmetric SU(N_c) gauge theory with an antisymmetric flavor, a conjugate symmetric flavor, eight fundamental flavors, m_f fundamental flavors and m_f antifundamental flavors. This is done by analyzing the N=1 supersymmetric SU(2m_f-N_c+4) magnetic gauge theory with dual matters and the corresponding dual superpotential.Comment: 20 pp, 3 figures; Pages 11,12, and 14 improved; to appear in CQ

    SUSY signals at HERA in the no-scale flipped SU(5) supergravity model

    Full text link
    Sparticle production and detection at HERA are studied within the recently proposed no-scale flipped SU(5)SU(5) supergravity model. Among the various reaction channels that could lead to sparticle production at HERA, only the following are within its limit of sensitivity in this model: e−p→e~L,R−χi0+X,ν~eχ1−+Xe^-p\to \tilde e^-_{L,R}\chi^0_i+X, \tilde \nu_e\chi^-_1+X, where χi0(i=1,2)\chi^0_i(i=1,2) are the two lightest neutralinos and χ1−\chi^-_1 is the lightest chargino. We study the elastic and deep-inelastic contributions to the cross sections using the Weizs\"acker-Williams approximation. We find that the most promising supersymmetric production channel is right-handed selectron (e~R\tilde e_{R}) plus first neutralino (χ10\chi^0_1), with one hard electron and missing energy signature. The ν~eχ1−\tilde\nu_e\chi^-_1 channel leads to comparable rates but also allows jet final states. A right-handedly polarized electron beam at HERA would shut off the latter channel and allow preferentially the former one. With an integrated luminosity of {\cal L}=100\ipb, HERA can extend the present LEPI lower bounds on me~R,mν~e,mχ10m_{\tilde e_R}, m_{\tilde\nu_e},m_{\chi^0_1} by \approx25\GeV, while {\cal L}=1000\ipb will make HERA competitive with LEPII. We also show that the Leading Proton Spectrometer (LPS) at HERA is an excellent supersymmetry detector which can provide indirect information about the sparticle masses by measuring the leading proton longitudinal momentum distribution.Comment: 11 pages, 8 figures (available upon request as uuencoded file or separate ps files), tex (harvmac) CTP-TAMU-15/93, CERN/LAA/93-1

    Quintessence and cosmic acceleration

    Full text link
    A cosmological model with perfect fluid and self-interacting quintessence field is considered in the framework of the spatially flat Friedmann-Robertson-Walker (FRW) geometry. By assuming that all physical quantities depend on the volume scale factor of the Universe, the general solution of the gravitational field equations can be expressed in an exact parametric form. The quintessence field is a free parameter. With an appropriate choice of the scalar field a class of exact solutions is obtained, with an exponential type scalar field potential fixed via the gravitational field equations. The general physical behavior of the model is consistent with the recent cosmological scenario favored by supernova Type Ia observations, indicating an accelerated expansion of the Universe.Comment: 6 pages, 3 figures, to appear in Int. J. Mod. Phys.

    Scaling Relations for Gaps in Fractional Quantum Hall States

    Full text link
    The microscopic approach of Murthy and Shankar, which has recently been used to calculate the transport gaps of quantum Hall states with fractions p/(2ps+1), also implies scaling relations between gaps within a single sequence (fixed s) as well as between gaps of corresponding states in different sequences. This work tests these relations for a system of electrons in the lowest Landau level interacting with a model potential cutoff at high momenta due to sample thickness

    Detecting an Invisibly Decaying Higgs Boson at a Hadron Supercollider

    Get PDF
    We demonstrate that an invisibly decaying Higgs boson with Standard Model coupling strength to top--anti-top can be detected at the LHC for masses up to about 250 GeV.Comment: 7 pages, requires phyzzx.tex and tables.tex, revised to convert results from SSC to LHC and include additional top quark mass cases, full postscript file including embedded figure available via anonymous ftp at ucdhep.ucdavis.edu as [anonymous.gunion]hinvisible_revised.ps, preprint UCD-93-2
    • …
    corecore