14 research outputs found

    Real-World Evidence Study on the Early Use of Cemiplimab in the UK: REACT-CEMI (Real World Evidence of Advanced CSCC Treatment With Cemiplimab)

    Get PDF
    BACKGROUND: Cemiplimab was licensed in the United Kingdom (UK) in 2019 for the treatment of patients with locally advanced and metastatic CSCC not suitable for curative surgery or radiotherapy (advanced CSCC [aCSCC]). No UK multi-center studies have investigated the real-world experience of cemiplimab post marketing authorization in aCSCC. METHODS: This non-interventional retrospective study (10 UK centers) involved data collection from medical records of patients with aCSCC who initiated cemiplimab treatment between 2 July 2019 and 30 November 2020. The study period was a minimum of 12 and a maximum of 36 months post cemiplimab initiation. The primary objective was to describe the real-world clinical effectiveness of cemiplimab (primary outcome: overall response rate [ORR]). RESULTS: Of 105 patients, 70% (n=73/105) were male (median [range] age at index of 78.5 [55.4-93.2] years); most patients (63% [n=50/80]) had an Eastern Cooperative Oncology Group (ECOG) score of 1 and 62% (n=63/102) had metastatic disease. The ORR within 12 months was 42% (95% confidence interval [CI] 32%-51%) and the disease control rate was 62% (n=65/105). The median (95% CI) real-world progression-free survival and overall survival from index was 8.6 (6.0-18.7) and 21.0 (14.7-25.2) months, respectively. The median (range) number of cemiplimab infusions was 11.0 (1.0-44.0). Eighty-seven percent experienced no cemiplimab treatment interruptions; 13% (n=14/105) interrupted treatment due to immune-related adverse reactions (irARs) (47% [n=9/19] of treatment interruption events). Eighty-five percent (n=89/105) of patients had discontinued cemiplimab treatment by the end of the study; where reasons for discontinuation were recorded, 20% (n=17/87) discontinued due to the completion of their 2-year treatment course. Nineteen percent (n=20/105) of patients experienced irARs. CONCLUSION: Effectiveness and safety data in this study are broadly similar to previous real-world studies of cemiplimab and the EMPOWER-CSCC1 clinical trial; with our cohort representing a broader population (included immunocompromised and transplant patients). Results support the use of cemiplimab for the treatment of aCSCC in a real-world setting

    Enfrentando los riesgos socionaturales

    Get PDF
    El objetivo del libro es comprender la magnitud de los Riesgos Socionaturales en MĂ©xico y LatinoamĂ©rica, para comprender el peligro que existe por algĂșn tipo de desastre, ya sea inundaciones, sismos, remociĂłn en masa, entre otros, ademĂĄs conocer quĂ© medidas preventivas, correctivas y de contingencias existen para estar atentos ante alguna señal que la naturaleza estĂ© enviando y asĂ­ evitar alguna catĂĄstrofe. El libro se enfoca en los aspectos bĂĄsicos de anĂĄlisis de los peligros, escenarios de riesgo, vulnerabilidad y resiliencia, importantes para la gestiĂłn prospectiva o preventiva

    Brain clocks capture diversity and disparities in aging and dementia

    Get PDF
    Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (RÂČ = 0.37, FÂČ = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging.</p

    Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

    Get PDF
    Peer reviewe

    Dementia in Latin America : paving the way towards a regional action plan

    Get PDF
    Regional challenges faced by Latin American and Caribbean countries (LACs) to fight dementia, such as heterogeneity, diversity, political instabilities, and socioeconomic disparities, can be addressed more effectively grounded in a collaborative setting based on the open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking and translational research) and align them to current global strategies to translate regional knowledge into actions with transformative power. Then, by characterizing genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions and mapping these to the above challenges, we provide the basic mosaics of knowledge that will pave the way towards a KtAF. We describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF

    Characterising the novel activation of wt1b in the notochord damage response of zebrafish larvae

    Get PDF
    The notochord is the defining structure of all chordates. A semi-­‐flexible elongated tube of cells, it forms along the central axis of the embryo and provides axial support during development. It also acts as a signalling centre during early embryogenesis, controlling the patterning of a number of tissues and establishing the early body axis of the embryo. In vertebrates, the function of the notochord expands beyond early development. It creates morphogenic gradients for the patterned formation of the vertebral bodies and, in adults, the remnants of the notochord form the nucleus pulposus, a gel-­‐like structure with an integral role in the distribution of vertebral pressure in the intervertebral disc. Little is known about how the notochord copes with damage during embryogenesis, but degeneration of the nucleus pulposus can lead to debilitating spinal disorders. In this thesis, I use a zebrafish model system to present new data that describes the cellular behaviours associated with how the notochord copes with external damage and how this damage can influence the future development of the vertebrae. I have uncovered a novel damage response in the notochord of zebrafish larvae and characterised the morphogenetic changes involved in the process using transgenic fluorescent lines. I have explored the damage in the context of the Wilms’ Tumour 1 (Wt1) gene, a vertebrate-­‐conserved transcription factor, which has recently been associated with several regenerative responses, and discovered that one of its zebrafish orthologues, wt1b, becomes upregulated in the notochord damage response. I have used fluorescent confocal imaging and immunohistochemistry to present new evidence that shows that upon injury, the outer notochord sheath cells upregulate the expression of wt1b. Additionally, I have used time-­‐lapse microscopy to show that damage to the notochord induces novel morphological changes in the injured organ, which include the loss of cellularity of the inner vacuolated cells and the movement of the wt1b-­‐positive outer sheath cells into the injured lumen. Long-­‐term imaging experiments have also demonstrated the capacity of the notochord to heal the damage over time, which ultimately leads to the formation of an extra, smaller vertebra in the wounded area. Skeletal staining of these fish has revealed a previously unknown putative cartilage switch at the site of damage, which leads to the formation of the new vertebral body. This finding has been supported by the microarray analysis of the injured area, which shows the unexpected de-­‐novo expression of cartilage markers at the site of damage The work in this thesis identifies for the first time an endogenous repair mechanism in the notochord of zebrafish larvae and describes the cellular, genetic and molecular processes cotrolling this novel wt1b-­‐associated damage response

    CacaoFIT: the network of cacao field trials in Latin America and its contribution to sustainable cacao farming in the region

    Get PDF
    A network of agronomists, researchers, and practitioners associated with cacao farming provided open access to their independent field trials across Latin America and the Caribbean (LAC). A centralized dataset was assembled using qualitative and quantitative data from 25 experimental field trials (hereafter referred to as “CacaoFIT”) spanning several LAC agroecosystems. This dataset was used to document the main traits and agroclimatic attributes of the cacao cultivation model being tested within the CacaoFIT network. By synthesizing data from an entire network of cacao trials, this study aimed to highlight specific design features and management practices that may contribute to better cacao farming sustainability. The CacaoFIT network comprises 200 ha of field trials testing over 150 cacao genotypes and set up under different shade canopy design, management, and research goals. Small-sized trials were common across Mesoamerica, whereas medium to large-size trials were distinct to South America. Cacao trials were 15 years old (on average) and ranged from 3 to 25 years of establishment. Most cacao trials were managed conventionally (i.e., 55%), while 20% were under organic practices, and the remaining 25% presented both conventional and organic management approaches. Most field trials (ca. 60%) planted an average of 10 international clones or national cultivars at high (1,230–1,500 plants ha−1) and medium density (833–1,111 plants ha−1). Mixed shade canopies were the dominant agroforestry model, while timber vs. leguminous shade canopies were also common. The diversity and depth of research domains examined across the CacaoFIT network varied widely. Agronomy and agroforestry topics dominated the research agenda across all trials, followed by environmental services domains. Cacao physiology and financial performance were researched to a lesser extent within the network. Five featured field trials from CacaoFIT offered technical guidelines to inform cacao farming within similar contexts. This collaborative work is a scaffold to encourage public–private partnerships, capacity building, and data sharing amongst cacao researchers across the tropics

    Brain clocks capture diversity and disparities in aging and dementia across geographically diverse populations

    Get PDF
    Brain clocks, which quantify discrepancies between brain age and chronological age, hold promise for understanding brain health and disease. However, the impact of diversity (including geographical, socioeconomic, sociodemographic, sex and neurodegeneration) on the brain-age gap is unknown. We analyzed datasets from 5,306 participants across 15 countries (7 Latin American and Caribbean countries (LAC) and 8 non-LAC countries). Based on higher-order interactions, we developed a brain-age gap deep learning architecture for functional magnetic resonance imaging (2,953) and electroencephalography (2,353). The datasets comprised healthy controls and individuals with mild cognitive impairment, Alzheimer disease and behavioral variant frontotemporal dementia. LAC models evidenced older brain ages (functional magnetic resonance imaging: mean directional error = 5.60, root mean square error (r.m.s.e.) = 11.91; electroencephalography: mean directional error = 5.34, r.m.s.e. = 9.82) associated with frontoposterior networks compared with non-LAC models. Structural socioeconomic inequality, pollution and health disparities were influential predictors of increased brain-age gaps, especially in LAC (RÂČ = 0.37, FÂČ = 0.59, r.m.s.e. = 6.9). An ascending brain-age gap from healthy controls to mild cognitive impairment to Alzheimer disease was found. In LAC, we observed larger brain-age gaps in females in control and Alzheimer disease groups compared with the respective males. The results were not explained by variations in signal quality, demographics or acquisition methods. These findings provide a quantitative framework capturing the diversity of accelerated brain aging
    corecore