5,828 research outputs found

    Observations of I2 at a remote marine site

    Get PDF
    Inorganic iodine plays a significant role in the photochemistry of the marine boundary layer, but the sources and cycling of iodine are not well understood. We report the first I2 observations in marine air that is not impacted by coastal macroalgal emissions or sea ice chemistry. The data clearly demonstrate that the very high I2 levels previously reported for coastal air are not representative of open ocean conditions. In this study, gas phase I2 was measured at the Cape Verde Atmospheric Observatory, a semi-remote site in the eastern tropical Atlantic, using atmospheric pressure chemical ionization tandem mass spectrometry. Atmospheric I2 levels typically increased beginning at sunset, leveled off after midnight, and then rapidly decreased at sunrise. There was also a smaller midday maximum in I 2 that was probably caused by a measurement artifact. Ambient I 2 mixing ratios ranged from <0.02-0.6 pmol mol-1 in May 2007 and <0.03-1.67 pmol mol-1 in May 2009. The sea-air flux implied by the nighttime buildup of I2 is too small to explain the observed daytime IO levels at this site. Iodocarbon measurements made in this region previously are also insufficient to explain the observed 1-2 pmol mol-1 of daytime IO. The observations imply the existence of an unknown daytime source of gas phase inorganic iodine. Carpenter et al. (2013) recently proposed that sea surface emissions of HOI are several times larger than the flux of I2. Such a flux could account for both the nighttime I2 and the daytime IO observations

    Wearable Internet of Things - from Human Activity Tracking to Clinical Integration

    Get PDF
    Wearable devices for human activity tracking have been rapidly emerging. Most of them are capable of sending health statistics to smartphones, smartwatches or smart bands. However, they only provide the data for individual analysis and their data is not integrated into clinical practice. Leveraging on the Internet of Things (IoT), edge and cloud computing technologies, we propose an architecture which is capable of providing cloud based clinical services using human activity data. Such services could supplement the shortage of staff in primary healthcare centers thereby reducing the burden on healthcare service providers. The enormous amount of data created from such services could also be utilized for planning future therapies by studying recovery cycles of existing patients. We provide a prototype based on our architecture and discuss its salient features. We also provide use cases of our system in personalized and home based healthcare services. We propose an International Telecommunication Union based standardization (ITU-T) for our design and discuss future directions in wearable IoT

    Large-scale latitudinal and vertical distributions of NMHCs and selected halocarbons in the troposphere over the Pacific Ocean during the March-April 1999 Pacific Exploratory Mission (PEM-Tropics B)

    Get PDF
    Nonmethane hydrocarbons (NMHCs) and selected halocarbons were measured in whole air samples collected over the remote Pacific Ocean during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics B (PEM-Tropics B) in March and early April 1999. The large-scale spatial distributions of NMHCs and C2Cl4 reveal a much more pronounced north-south interhemispheric gradient, with higher concentrations in the north and lower levels in the south, than for the late August to early October 1996 PEM-Tropics A experiment. Strong continental outflow and winter-long accumulation of pollutants led to seasonally high Northern Hemisphere trace gas levels during PEM-Tropics B. Observations of enhanced levels of Halon 1211 (from developing Asian nations such as the PRC) and CH3Cl (from SE Asian biomass burning) support a significant southern Asian influence at altitudes above 1 km and north of 10° N. By contrast, at low altitude over the North Pacific the dominance of urban/industrial tracers, combined with low levels of Halon 1211 and CH3Cl, indicate a greater influence from developed nations such as Japan, Europe, and North America. Penetration of air exhibiting aged northern hemisphere characteristics was frequently observed at low altitudes over the equatorial central and western Pacific south to ∼5° S. The relative lack of southern hemisphere biomass burning sources and the westerly position of the South Pacific convergence zone contributed to significantly lower PEM-Tropics B mixing ratios of the NMHCs and CH3Cl south of 10° S compared to PEM-Tropics A. Therefore the trace gas composition of the South Pacific troposphere was considerably more representative of minimally polluted tropospheric conditions during PEM-Tropics B. Copyright 2001 by the American Geophysical Union

    Nighttime atmospheric chemistry of iodine

    Get PDF
    Little attention has so far been paid to the nighttime atmospheric chemistry of iodine species. Current atmospheric models predict a buildup of HOI and I₂ during the night that leads to a spike of IO at sunrise, which is not observed by measurements. In this work, electronic structure calculations are used to survey possible reactions that HOI and I₂ could undergo at night in the lower troposphere, and hence reduce their nighttime accumulation. The new reaction NO₃+ HOI  →  IO + HNO₃ is proposed, with a rate coefficient calculated from statistical rate theory over the temperature range 260–300 K and at a pressure of 1000 hPa to be k(T)  =  2.7  ×  10¯¹² (300 K/T)²·⁶⁶ cm³ molecule¯¹ s¯¹. This reaction is included in two atmospheric models, along with the known reaction between I₂ and NO₃, to explore a new nocturnal iodine radical activation mechanism. The results show that this iodine scheme leads to a considerable reduction of nighttime HOI and I₂, which results in the enhancement of more than 25 % of nighttime ocean emissions of HOI +I₂ and the removal of the anomalous spike of IO at sunrise. We suggest that active nighttime iodine can also have a considerable, so far unrecognized, impact on the reduction of the NO₃ radical levels in the marine boundary layer (MBL) and hence upon the nocturnal oxidizing capacity of the marine atmosphere. The effect of this is exemplified by the indirect effect on dimethyl sulfide (DMS) oxidation

    Enhanced production of oxidised mercury over the tropical Pacific Ocean: A key missing oxidation pathway

    Get PDF
    Mercury is a contaminant of global concern. It is transported in the atmosphere primarily as gaseous elemental mercury, but its reactivity and deposition to the surface environment, through which it enters the aquatic food chain, is greatly enhanced following oxidation. Measurements and modelling studies of oxidised mercury in the polar to sub-tropical marine boundary layer (MBL) have suggested that photolytically produced bromine atoms are the primary oxidant of mercury. We report year-round measurements of elemental and oxidised mercury, along with ozone, halogen oxides (IO and BrO) and nitrogen oxides (NO2), in the MBL over the Galápagos Islands in the equatorial Pacific. Elemental mercury concentration remained low throughout the year, while higher than expected levels of oxidised mercury occurred around midday. Our results show that the production of oxidised mercury in the tropical MBL cannot be accounted for by bromine oxidation only, or by the inclusion of ozone and hydroxyl. As a two-step oxidation mechanism, where the HgBr intermediate is further oxidised to Hg(II), depends critically on the stability of HgBr, an additional oxidant is needed to react with HgBr to explain more than 50% of the observed oxidised mercury. Based on best available thermodynamic data, we show that atomic iodine, NO2, or HO2 could all play the potential role of the missing oxidant, though their relative importance cannot be determined explicitly at this time due to the uncertainties associated with mercury oxidation kinetics. We conclude that the key pathway that significantly enhances atmospheric mercury oxidation and deposition to the tropical oceans is missing from the current understanding of atmospheric mercury oxidation

    Can metacognitive interventions improve insight in schizophrenia spectrum disorders? A systematic review and meta-analysis

    Get PDF
    Background: Patients with schizophrenia spectrum disorders (SSD) tend to lack insight, which is linked to poor outcomes. The effect size of previous treatments on insight changes in SSD has been small. Metacognitive interventions may improve insight in SSD, although this remains unproved. Methods: We carried out a systematic review and meta-analysis of randomized controlled trials (RCTs) to examine the effects of metacognitive interventions designed for SSD, namely Metacognitive Training (MCT) and Metacognitive Reflection and Insight Therapy (MERIT), on changes in cognitive and clinical insight at post-treatment and at follow-up. Results: Twelve RCTs, including 10 MCT RCTs (n = 717 participants) and two MERIT trials (n = 90), were selected, totalling N = 807 participants. Regarding cognitive insight six RCTs (n = 443) highlighted a medium effect of MCT on self-reflectiveness at post-treatment, d = 0.46, p < 0.01, and at follow-up, d = 0.30, p < 0.01. There was a small effect of MCT on self-certainty at post-treatment, d = −0.23, p = 0.03, but not at follow-up. MCT was superior to controls on an overall Composite Index of cognitive insight at post-treatment, d = 1.11, p < 0.01, and at follow-up, d = 0.86, p = 0.03, although we found evidence of heterogeneity. Of five MCT trials on clinical insight (n = 244 participants), which could not be meta-analysed, four of them favoured MCT compared v. control. The two MERIT trials reported conflicting results. Conclusions: Metacognitive interventions, particularly Metacognitive Training, appear to improve insight in patients with SSD, especially cognitive insight shortly after treatment. Further long-term RCTs are needed to establish whether these metacognitive interventions-related insight changes are sustained over a longer time period and result in better outcomes

    Estimating instantaneous sea-ice dynamics from space using the bi-static radar measurements of Earth Explorer 10 candidate Harmony

    Get PDF
    This article describes the observation techniques and suggests processing methods to estimate dynamical sea-ice parameters from data of the Earth Explorer 10 candidate Harmony. The two Harmony satellites will fly in a reconfigurable formation with Sentinel-1D. Both will be equipped with a multi-angle thermal infrared sensor and a passive radar receiver, which receives the reflected Sentinel-1D signals using two antennas. During the lifetime of the mission, two different formations will be flown. In the stereo formation, the Harmony satellites will fly approximately 300 km in front and behind Sentinel-1, which allows for the estimation of instantaneous sea-ice drift vectors. We demonstrate that the addition of instantaneous sea-ice drift estimates on top of the daily integrated values from feature tracking have benefits in terms of interpretation, sampling and resolution. The wide-swath instantaneous drift observations of Harmony also help to put high-temporal-resolution instantaneous buoy observations into a spatial context. Additionally, it allows for the extraction of deformation parameters, such as shear and divergence. As a result, Harmony's data will help to improve sea-ice statistics and parametrizations to constrain sea-ice models. In the cross-track interferometry (XTI) mode, Harmony's satellites will fly in close formation with an XTI baseline to be able to estimate surface elevations. This will allow for improved estimates of sea-ice volume and also enables the retrieval of full, two-dimensional swell-wave spectra in sea-ice-covered regions without any gaps. In stereo formation, the line-of-sight diversity allows the inference of swell properties in both directions using traditional velocity bunching approaches. In XTI mode, Harmony's phase differences are only sensitive to the ground-range direction swell. To fully recover two-dimensional swell-wave spectra, a synergy between XTI height spectra and intensity spectra is required. If selected, the Harmony mission will be launched in 2028

    The validity of using ICD-9 codes and pharmacy records to identify patients with chronic obstructive pulmonary disease

    Get PDF
    Background: Administrative data is often used to identify patients with chronic obstructive pulmonary disease (COPD), yet the validity of this approach is unclear. We sought to develop a predictive model utilizing administrative data to accurately identify patients with COPD. Methods: Sequential logistic regression models were constructed using 9573 patients with postbronchodilator spirometry at two Veterans Affairs medical centers (2003-2007). COPD was defined as: 1) FEV1/FVC <0.70, and 2) FEV1/FVC < lower limits of normal. Model inputs included age, outpatient or inpatient COPD-related ICD-9 codes, and the number of metered does inhalers (MDI) prescribed over the one year prior to and one year post spirometry. Model performance was assessed using standard criteria. Results: 4564 of 9573 patients (47.7%) had an FEV1/FVC < 0.70. The presence of ≥1 outpatient COPD visit had a sensitivity of 76% and specificity of 67%; the AUC was 0.75 (95% CI 0.74-0.76). Adding the use of albuterol MDI increased the AUC of this model to 0.76 (95% CI 0.75-0.77) while the addition of ipratropium bromide MDI increased the AUC to 0.77 (95% CI 0.76-0.78). The best performing model included: ≥6 albuterol MDI, ≥3 ipratropium MDI, ≥1 outpatient ICD-9 code, ≥1 inpatient ICD-9 code, and age, achieving an AUC of 0.79 (95% CI 0.78-0.80). Conclusion: Commonly used definitions of COPD in observational studies misclassify the majority of patients as having COPD. Using multiple diagnostic codes in combination with pharmacy data improves the ability to accurately identify patients with COPD.Department of Veterans Affairs, Health Services Research and Development (DHA), American Lung Association (CI- 51755-N) awarded to DHA, the American Thoracic Society Fellow Career Development AwardPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/84155/1/Cooke - ICD9 validity in COPD.pd
    corecore