2,512 research outputs found

    Null Curves in C3\mathbb{C}^3 and Calabi-Yau Conjectures

    Full text link
    For any open orientable surface MM and convex domain ΩC3,\Omega\subset \mathbb{C}^3, there exists a Riemann surface NN homeomorphic to MM and a complete proper null curve F:NΩ.F:N\to\Omega. This result follows from a general existence theorem with many applications. Among them, the followings: For any convex domain Ω\Omega in C2\mathbb{C}^2 there exist a Riemann surface NN homeomorphic to MM and a complete proper holomorphic immersion F:NΩ.F:N\to\Omega. Furthermore, if DR2D \subset \mathbb{R}^2 is a convex domain and Ω\Omega is the solid right cylinder {xC2Re(x)D},\{x \in \mathbb{C}^2 | {Re}(x) \in D\}, then FF can be chosen so that Re(F):ND{\rm Re}(F):N\to D is proper. There exists a Riemann surface NN homeomorphic to MM and a complete bounded holomorphic null immersion F:NSL(2,C).F:N \to {\rm SL}(2,\mathbb{C}). There exists a complete bounded CMC-1 immersion X:MH3.X:M \to \mathbb{H}^3. For any convex domain ΩR3\Omega \subset \mathbb{R}^3 there exists a complete proper minimal immersion (Xj)j=1,2,3:MΩ(X_j)_{j=1,2,3}:M \to \Omega with vanishing flux. Furthermore, if DR2D \subset \mathbb{R}^2 is a convex domain and Ω={(xj)j=1,2,3R3(x1,x2)D},\Omega=\{(x_j)_{j=1,2,3} \in \mathbb{R}^3 | (x_1,x_2) \in D\}, then XX can be chosen so that (X1,X2):MD(X_1,X_2):M\to D is proper. Any of the above surfaces can be chosen with hyperbolic conformal structure.Comment: 20 pages, 4 figures. To appear in Mathematische Annale
    corecore