42,314 research outputs found
Analytical study of tunneling times in flat histogram Monte Carlo
We present a model for the dynamics in energy space of multicanonical
simulation methods that lends itself to a rather complete analytic
characterization. The dynamics is completely determined by the density of
states. In the \pm J 2D spin glass the transitions between the ground state
level and the first excited one control the long time dynamics. We are able to
calculate the distribution of tunneling times and relate it to the
equilibration time of a starting probability distribution. In this model, and
possibly in any model in which entering and exiting regions with low density of
states are the slowest processes in the simulations, tunneling time can be much
larger (by a factor of O(N)) than the equilibration time of the probability
distribution. We find that these features also hold for the energy projection
of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005
Large time behavior for vortex evolution in the half-plane
In this article we study the long-time behavior of incompressible ideal flow
in a half plane from the point of view of vortex scattering. Our main result is
that certain asymptotic states for half-plane vortex dynamics decompose
naturally into a nonlinear superposition of soliton-like states. Our approach
is to combine techniques developed in the study of vortex confinement with weak
convergence tools in order to study the asymptotic behavior of a self-similar
rescaling of a solution of the incompressible 2D Euler equations on a half
plane with compactly supported, nonnegative initial vorticity.Comment: 30 pages, no figure
Propagation velocity of epileptiform activity in the hippocampus
The propagation of epileptiform burst activity was investigated in the CA1 area of the in-vitro hippocampal slice preparation of the guinea pig. This activity was provoked by 0.1 mM 4-aminopyridine in the bathing medium and was recorded in the pyramidal layer with an array of eight electrodes. The delay between the first population spike of a burst recorded with different electrodes was calculated using the cross-correlation function. The propagation velocity was estimated from the delays and the electrode intervals. It was found that the velocity of spontaneous and evoked epileptiform bursts varies between 0.15 and 5 m/s and is not confined to the range of conduction velocities of the fibre systems in CA1 (0.3–0.55 and 1.0–1.8 m/s). Different velocities can be present in different parts of the CA1 area and the initiation of spontaneous bursts is not confined to the CA2–3 areas, but can also occur in CA1. Burst activity also propagated in a low calcium-high magnesium medium. Different mechanisms of propagation are discussed and it is argued that the propagation velocity due to ephaptic interaction may vary largely. It is concluded that epileptiform activity can be propagated not only by synaptic connections at or near the pyramidal layer, but also by way of electrical field effects of population spikes
- …