1,185 research outputs found
K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif
The KRAS oncogene is mutated more frequently in human cancer than any other. The KRAS transcript is alternatively spliced to give rise to two products, K-Ras4A and K-Ras4B, both of which are oncogenic when KRAS is mutated. We detected significant amounts of each transcript in human tumor cells and colorectal carcinomas. We found that K-Ras4A is targeted to the plasma membrane by dual targeting motifs distinct from those of K-Ras4B. Because interfering with membrane association of Ras proteins remains one of the most attractive approaches to anti-Ras therapy, efforts in this direction will have to disrupt both the K-Ras4A and the K-Ras4B membrane-targeting pathways
Historical analysis of the Brazilian cervical cancer screening program from 2006 to 2013: a time for reflection
BACKGROUND: The Cervical Cancer Database of the Brazilian National Health Service (SISCOLO) contains information regarding all cervical cytological tests and, if properly explored, can be used as a tool for monitoring and managing the cervical cancer screening program. The aim of this study was to perform a historical analysis of the cervical cancer screening program in Brazil from 2006 to 2013.
MATERIAL AND METHODS: The data necessary to calculate quality indicators were obtained from the SISCOLO, a Brazilian health system tool. Joinpoint analysis was used to calculate the annual percentage change.
RESULTS: We observed important trends showing decreased rates of low-grade squamous intraepithelial lesions (LSIL) and high-grade squamous intraepithelial lesions (HSIL) and an increased rate of rejected exams from 2009 to 2013. The index of positivity was maintained at levels below those indicated by international standards; very low frequencies of unsatisfactory cases were observed over the study period, which partially contradicts the low rate of positive cases. The number of positive cytological diagnoses was below that expected, considering that developed countries with low frequencies of cervical cancer detect more lesions annually.
CONCLUSIONS: The evolution of indicators from 2006 to 2013 suggests that actions must be taken to improve the effectiveness of cervical cancer control in Brazil
Queer In AI: A Case Study in Community-Led Participatory AI
Queerness and queer people face an uncertain future in the face of ever more widely deployed and invasive artificial intelligence (AI). These technologies have caused numerous harms to queer people, including privacy violations, censoring and downranking queer content, exposing queer people and spaces to harassment by making them hypervisible, deadnaming and outing queer people. More broadly, they have violated core tenets of queerness by classifying and controlling queer identities. In response to this, the queer community in AI has organized Queer in AI, a global, decentralized, volunteer-run grassroots organization that employs intersectional and community-led participatory design to build an inclusive and equitable AI future. In this paper, we present Queer in AI as a case study for community-led participatory design in AI. We examine how participatory design and intersectional tenets started and shaped this communityâs programs over the years. We discuss different challenges that emerged in the process, look at ways this organization has fallen short of operationalizing participatory and intersectional principles, and then assess the organizationâs impact. Queer in AI provides important lessons and insights for practitioners and theorists of participatory methods broadly through its rejection of hierarchy in favor of decentralization, success at building aid and programs by and for the queer community, and effort to change actors and institutions outside of the queer community. Finally, we theorize how communities like Queer in AI contribute to the participatory design in AI more broadly by fostering cultures of participation in AI, welcoming and empowering marginalized participants, critiquing poor or exploitative participatory practices, and bringing participation to institutions outside of individual research projects. Queer in AIâs work serves as a case study of grassroots activism and participatory methods within AI, demonstrating the potential of community-led participatory methods and intersectional praxis, while also providing challenges, case studies, and nuanced insights to researchers developing and using participatory methods
Activation of the Innate Immune Response against DENV in Normal Non-Transformed Human Fibroblasts
In this work, we demonstrate that that both human whole skin and freshly isolated skin fibroblasts are productively infected with Dengue virus (DENV). In addition, primary skin fibroblast cultures were established and subsequently infected with DENV-2; we showed in these cells the presence of the viral antigen NS3, and we found productive viral infection by a conventional plaque assay. Of note, the infectivity rate was almost the same in all the primary cultures analyzed from different donors. The skin fibroblasts infected with DENV-2 underwent signaling through both TLR3 and RIG-1, but not Mda5, triggering up-regulation of IFNβ, TNFι, defensin 5 (HB5) and β defensin 2 (HβD2). In addition, DENV infected fibroblasts showed increased nuclear translocation of interferon (IFN) regulatory factor 3 (IRF3), but not interferon regulatory factor 7 IRF7, when compared with mock-infected fibroblasts. Our data suggest that fibroblasts might even participate producing mediators involved in innate immunity that activate and contribute to the orchestration of the local innate responses. This work is the first evaluating primary skin fibroblast cultures obtained from different humans, assessing both their susceptibility to DENV infection as well as their ability to produce molecules crucial for innate immunity
Dengue vaccines: what we know, what has been done, but what does the future hold?
Dengue, a disease caused by any of the four serotypes of dengue viruses, is the most important arthropod-borne viral disease in the world in terms of both morbidity and mortality. The infection by these viruses induces a plethora of clinical manifestations ranging from asymptomatic infections to severe diseases with involvement of several organs. Severe forms of the disease are more frequent in secondary infections by distinct serotypes and, consequently, a dengue vaccine must be tetravalent. Although several approaches have been used on the vaccine development, no vaccine is available against these viruses, especially because of problems on the development of a tetravalent vaccine. Here, we describe briefly the vaccine candidates available and their ability to elicit a protective immune response. We also discuss the problems and possibilities of any of the vaccines in final development stage reaching the market for human use
Measurement of the cosmic ray spectrum above eV using inclined events detected with the Pierre Auger Observatory
A measurement of the cosmic-ray spectrum for energies exceeding
eV is presented, which is based on the analysis of showers
with zenith angles greater than detected with the Pierre Auger
Observatory between 1 January 2004 and 31 December 2013. The measured spectrum
confirms a flux suppression at the highest energies. Above
eV, the "ankle", the flux can be described by a power law with
index followed by
a smooth suppression region. For the energy () at which the
spectral flux has fallen to one-half of its extrapolated value in the absence
of suppression, we find
eV.Comment: Replaced with published version. Added journal reference and DO
Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory
The Auger Engineering Radio Array (AERA) is part of the Pierre Auger
Observatory and is used to detect the radio emission of cosmic-ray air showers.
These observations are compared to the data of the surface detector stations of
the Observatory, which provide well-calibrated information on the cosmic-ray
energies and arrival directions. The response of the radio stations in the 30
to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of
the incoming electric field. For the latter, the energy deposit per area is
determined from the radio pulses at each observer position and is interpolated
using a two-dimensional function that takes into account signal asymmetries due
to interference between the geomagnetic and charge-excess emission components.
The spatial integral over the signal distribution gives a direct measurement of
the energy transferred from the primary cosmic ray into radio emission in the
AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air
shower arriving perpendicularly to the geomagnetic field. This radiation energy
-- corrected for geometrical effects -- is used as a cosmic-ray energy
estimator. Performing an absolute energy calibration against the
surface-detector information, we observe that this radio-energy estimator
scales quadratically with the cosmic-ray energy as expected for coherent
emission. We find an energy resolution of the radio reconstruction of 22% for
the data set and 17% for a high-quality subset containing only events with at
least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO
Measurement of the Radiation Energy in the Radio Signal of Extensive Air Showers as a Universal Estimator of Cosmic-Ray Energy
We measure the energy emitted by extensive air showers in the form of radio
emission in the frequency range from 30 to 80 MHz. Exploiting the accurate
energy scale of the Pierre Auger Observatory, we obtain a radiation energy of
15.8 \pm 0.7 (stat) \pm 6.7 (sys) MeV for cosmic rays with an energy of 1 EeV
arriving perpendicularly to a geomagnetic field of 0.24 G, scaling
quadratically with the cosmic-ray energy. A comparison with predictions from
state-of-the-art first-principle calculations shows agreement with our
measurement. The radiation energy provides direct access to the calorimetric
energy in the electromagnetic cascade of extensive air showers. Comparison with
our result thus allows the direct calibration of any cosmic-ray radio detector
against the well-established energy scale of the Pierre Auger Observatory.Comment: Replaced with published version. Added journal reference and DOI.
Supplemental material in the ancillary file
Search for Supersymmetry at the LHC in Events with Jets and Missing Transverse Energy
A search for events with jets and missing transverse energy is performed in a data sample of pp collisions collected at root s = 7 TeV by the CMS experiment at the LHC. The analyzed data sample corresponds to an integrated luminosity of 1: 14 fb(-1). In this search, a kinematic variable alpha(T) is used as the main discriminator between events with genuine and misreconstructed missing transverse energy. No excess of events over the standard model expectation is found. Exclusion limits in the parameter space of the constrained minimal supersymmetric extension of the standard model are set. In this model, squark masses below 1.1 TeV are excluded at 95% C. L. Gluino masses below 1.1 TeV are also ruled out at 95% C. L. for values of the universal scalar mass parameter below 500 GeV
- âŚ