2,387 research outputs found
Welfare arrangements, safety nets and familial support for the elderly in Portugal
This thesis analyses the welfare arrangements of the Portuguese elderly from an historical and a sociological perspective. Two goals form the focus of the thesis. First, it attempts to enrich the discussion on familialism as a model of welfare provision in old age in Portugal. Starting with the historical analysis of the process of consolidation of a model of welfare provision that is based on a set of assumptions about the existence of intergenerational ties and kin solidarity throughout the life course, the thesis moves on to the sociological analysis of family dynamics and normative propositions related to welfare arrangements in old age. The broad question underlying the analysis is to know how resilient and operative is familialism as a logics of welfare provision for the Portuguese elderly. The thesis shows that the resilience of familialism in the lives of the elderly is related to a complex set of social, economic and normative intricacies that still provide for a support network in old age but that show signs of being under accelerated erosion. Second, the thesis aims to make a contribution to the analysis of welfare states and social policies in familialist countries by demonstrating the explanatory power of family arrangements for understanding welfare arrangements in old age. This involves introducing in the analysis of welfare arrangements a focus on intergenerational and kin relationships, demonstrating how the familialist model is intertwined with a complex network of exchanges of support that goes beyond the needs of the elderly and that is in fact structured around the functional roles of each member of the household and/or family for the welfare of the whole. The thesis draws on review of literature and secondary data analysis. The data used came from three main sources: the European Community Household Panel (1998), the Portuguese Family Budget Survey (2000) and the Eurobarometer Survey Series (1992, 1995 and 1998-99). The analysis of data has privileged a descriptive approach, using some multivariate analysis to make meaningful synthesis. It combines crossnational comparative analysis with a case-study focus. The goal of the empirical analysis was to come up with a holistic synthesis of welfare arrangements of the Portuguese elderly linking them to three main dimensions: institutional, familial and normative
Main variables that are influenced by the anthropic activity resulting from the soybean production in the municipalities of Mato Grosso
This study aimed to identify how the main variables that are influenced by the anthropic activity resulting from the soybean production in the Mato Grosso Municipalities cluster among themselves. Factor analysis method was used to identify underlying dimensions that can account for the shared variation of observed variables. The factorial analysis proposes to reduce the number of variables by the extraction of independent factors, so that a better explanation of the relationship between the original variables occurs, avoiding correlational problems and reducing the relevance of endogeneity. Three dimensions were identified, each with a different combination of variables. Based on the results from principal components modelling it is fair to state that the impacts of the anthropic activity resulting from soybean production in the Mato Grosso municipalities can be analyzed according to three main domains: production impacts, socioeconomic impacts and demographic impacts. The main contribution of this paper is that it offers a useful framework of analysis for both public and private decision-makers regarding the influence of soybean production on economic, social, environmental, and cultural factors
SARS-CoV-2 introductions and early dynamics of the epidemic in Portugal
Genomic surveillance of SARS-CoV-2 in Portugal was rapidly implemented by
the National Institute of Health in the early stages of the COVID-19 epidemic, in collaboration
with more than 50 laboratories distributed nationwide.
Methods By applying recent phylodynamic models that allow integration of individual-based
travel history, we reconstructed and characterized the spatio-temporal dynamics of SARSCoV-2 introductions and early dissemination in Portugal.
Results We detected at least 277 independent SARS-CoV-2 introductions, mostly from
European countries (namely the United Kingdom, Spain, France, Italy, and Switzerland),
which were consistent with the countries with the highest connectivity with Portugal.
Although most introductions were estimated to have occurred during early March 2020, it is
likely that SARS-CoV-2 was silently circulating in Portugal throughout February, before the
first cases were confirmed.
Conclusions Here we conclude that the earlier implementation of measures could have
minimized the number of introductions and subsequent virus expansion in Portugal. This
study lays the foundation for genomic epidemiology of SARS-CoV-2 in Portugal, and highlights the need for systematic and geographically-representative genomic surveillance.We gratefully acknowledge to Sara Hill and Nuno Faria (University of Oxford) and
Joshua Quick and Nick Loman (University of Birmingham) for kindly providing us with
the initial sets of Artic Network primers for NGS; Rafael Mamede (MRamirez team,
IMM, Lisbon) for developing and sharing a bioinformatics script for sequence curation
(https://github.com/rfm-targa/BioinfUtils); Philippe Lemey (KU Leuven) for providing
guidance on the implementation of the phylodynamic models; Joshua L. Cherry
(National Center for Biotechnology Information, National Library of Medicine, National
Institutes of Health) for providing guidance with the subsampling strategies; and all
authors, originating and submitting laboratories who have contributed genome data on
GISAID (https://www.gisaid.org/) on which part of this research is based. The opinions
expressed in this article are those of the authors and do not reflect the view of the
National Institutes of Health, the Department of Health and Human Services, or the
United States government. This study is co-funded by Fundação para a Ciência e Tecnologia
and Agência de Investigação Clínica e Inovação Biomédica (234_596874175) on
behalf of the Research 4 COVID-19 call. Some infrastructural resources used in this study
come from the GenomePT project (POCI-01-0145-FEDER-022184), supported by
COMPETE 2020 - Operational Programme for Competitiveness and Internationalisation
(POCI), Lisboa Portugal Regional Operational Programme (Lisboa2020), Algarve Portugal
Regional Operational Programme (CRESC Algarve2020), under the PORTUGAL
2020 Partnership Agreement, through the European Regional Development Fund
(ERDF), and by Fundação para a Ciência e a Tecnologia (FCT).info:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear un derstanding of how ecological communities respond to environmental change across time and space.3,4
While the increasing availability of global databases on ecological communities has advanced our knowledge
of biodiversity sensitivity to environmental changes,5–7 vast areas of the tropics remain understudied.8–11 In
the American tropics, Amazonia stands out as the world’s most diverse rainforest and the primary source of
Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepre sented in biodiversity databases.13–15 To worsen this situation, human-induced modifications16,17 may elim inate pieces of the Amazon’s biodiversity puzzle before we can use them to understand how ecological com munities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus
crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced
environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple or ganism groups in a machine learning model framework to map the research probability across the Brazilian
Amazonia, while identifying the region’s vulnerability to environmental change. 15%–18% of the most ne glected areas in ecological research are expected to experience severe climate or land use changes by
2050. This means that unless we take immediate action, we will not be able to establish their current status,
much less monitor how it is changing and what is being lostinfo:eu-repo/semantics/publishedVersio
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Pervasive gaps in Amazonian ecological research
Biodiversity loss is one of the main challenges of our time,1,2 and attempts to address it require a clear understanding of how ecological communities respond to environmental change across time and space.3,4 While the increasing availability of global databases on ecological communities has advanced our knowledge of biodiversity sensitivity to environmental changes,5,6,7 vast areas of the tropics remain understudied.8,9,10,11 In the American tropics, Amazonia stands out as the world's most diverse rainforest and the primary source of Neotropical biodiversity,12 but it remains among the least known forests in America and is often underrepresented in biodiversity databases.13,14,15 To worsen this situation, human-induced modifications16,17 may eliminate pieces of the Amazon's biodiversity puzzle before we can use them to understand how ecological communities are responding. To increase generalization and applicability of biodiversity knowledge,18,19 it is thus crucial to reduce biases in ecological research, particularly in regions projected to face the most pronounced environmental changes. We integrate ecological community metadata of 7,694 sampling sites for multiple organism groups in a machine learning model framework to map the research probability across the Brazilian Amazonia, while identifying the region's vulnerability to environmental change. 15%–18% of the most neglected areas in ecological research are expected to experience severe climate or land use changes by 2050. This means that unless we take immediate action, we will not be able to establish their current status, much less monitor how it is changing and what is being lost
Physics case for an LHCb Upgrade II - Opportunities in flavour physics, and beyond, in the HL-LHC era
The LHCb Upgrade II will fully exploit the flavour-physics opportunities of the HL-LHC, and study additional physics topics that take advantage of the forward acceptance of the LHCb spectrometer. The LHCb Upgrade I will begin operation in 2020. Consolidation will occur, and modest enhancements of the Upgrade I detector will be installed, in Long Shutdown 3 of the LHC (2025) and these are discussed here. The main Upgrade II detector will be installed in long shutdown 4 of the LHC (2030) and will build on the strengths of the current LHCb experiment and the Upgrade I. It will operate at a luminosity up to 2×1034
cm−2s−1, ten times that of the Upgrade I detector. New detector components will improve the intrinsic performance of the experiment in certain key areas. An Expression Of Interest proposing Upgrade II was submitted in February 2017. The physics case for the Upgrade II is presented here in more depth. CP-violating phases will be measured with precisions unattainable at any other envisaged facility. The experiment will probe b → sl+l−and b → dl+l− transitions in both muon and electron decays in modes not accessible at Upgrade I. Minimal flavour violation will be tested with a precision measurement of the ratio of B(B0 → μ+μ−)/B(Bs → μ+μ−). Probing charm CP violation at the 10−5 level may result in its long sought discovery. Major advances in hadron spectroscopy will be possible, which will be powerful probes of low energy QCD. Upgrade II potentially will have the highest sensitivity of all the LHC experiments on the Higgs to charm-quark couplings. Generically, the new physics mass scale probed, for fixed couplings, will almost double compared with the pre-HL-LHC era; this extended reach for flavour physics is similar to that which would be achieved by the HE-LHC proposal for the energy frontier
LHCb upgrade software and computing : technical design report
This document reports the Research and Development activities that are carried out in the software and computing domains in view of the upgrade of the LHCb experiment. The implementation of a full software trigger implies major changes in the core software framework, in the event data model, and in the reconstruction algorithms. The increase of the data volumes for both real and simulated datasets requires a corresponding scaling of the distributed computing infrastructure. An implementation plan in both domains is presented, together with a risk assessment analysis
Les droits disciplinaires des fonctions publiques : « unification », « harmonisation » ou « distanciation ». A propos de la loi du 26 avril 2016 relative à la déontologie et aux droits et obligations des fonctionnaires
The production of tt‾ , W+bb‾ and W+cc‾ is studied in the forward region of proton–proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98±0.02 fb−1 . The W bosons are reconstructed in the decays W→ℓν , where ℓ denotes muon or electron, while the b and c quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions.The production of , and is studied in the forward region of proton-proton collisions collected at a centre-of-mass energy of 8 TeV by the LHCb experiment, corresponding to an integrated luminosity of 1.98 0.02 \mbox{fb}^{-1}. The bosons are reconstructed in the decays , where denotes muon or electron, while the and quarks are reconstructed as jets. All measured cross-sections are in agreement with next-to-leading-order Standard Model predictions
- …