186 research outputs found

    Role of Neuroglia in the Habenular Connection Hub of the Dorsal Diencephalic Conduction System

    Get PDF
    Astrocytes and microglia play important roles in organizing the structure and function of neuronal networks in the central nervous system (CNS). The dorsal diencephalic connection system (DDCS) is a phylogenetically ancient regulatory system by which the forebrain influences the activity of cholinergic and ascending monoaminergic pathways in the midbrain. The DDCS is probably important in inducing aspects of mental disorders, such as depression and addiction. The habenula is the small but highly complex connecting center of the DDCS in the epithalamus that consists of a medial (MHb) and lateral (LHb) division. MHb and LHb are built differently and connect different brain structures. Studies in animal models and human biomarker research provide good evidence that astroglia and microglia also affect the symptoms of mental disorders (such as depression). Thesignificance of these neuroglia in habenular neurotransmission has not been extensively studied. This review article provides arguments for doing so more thoroughly.<br/

    Circuits Regulating Pleasure and Happiness-Mechanisms of Depression

    Get PDF
    According to our model of the regulation of appetitive-searching versus distress-avoiding behaviors, the motivation to display these essential conducts is regulated by two parallel cortico-striato-thalamo-cortical, re-entry circuits, including the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia, running from the caudate nucleus on one side, to the centromedial amygdala on the other side, controls the intensity of these reward-seeking and misery-fleeing behaviors by stimulating the activity of the (pre)frontal and limbic cortices. Hyperactive motivation to display behavior that potentially results in reward induces feelings of hankering (relief leads to pleasure). Hyperactive motivation to exhibit behavior related to avoidance of misery results in dysphoria (relief leads to happiness). These two systems collaborate in a reciprocal fashion. In clinical depression, a mismatch exists between the activities of these two circuits: the balance is shifted to the misery-avoiding side. Five theories have been developed to explain the mechanism of depressive mood disorders, including the monoamine, biorhythm, neuro-endocrine, neuro-immune, and kindling/neuroplasticity theories. This paper describes these theories in relationship to the model (described above) of the regulation of reward-seeking versus misery-avoiding behaviors. Chronic stress that leads to structural changes may induce the mismatch between the two systems. This mismatch leads to lack of pleasure, low energy, and indecisiveness, on one hand, and dysphoria, continuous worrying, and negative expectations on the other hand. The neuroplastic effects of monoamines, cortisol, and cytokines may mediate the induction of these structural alterations. Long-term exposure to stressful situations (particularly experienced during childhood) may lead to increased susceptibility for developing this condition. This hypothesis opens up the possibility of treating depression with psychotherapy. Genetic and other biological factors (toxic, infectious, or traumatic) may increase sensitivity to the induction of relevant neuroplastic changes. Reversal or compensation of these neuroplastic adjustments may explain the effects of biological therapies in treating depression

    Neurobiological mechanisms associated with antipsychotic drug-induced dystonia

    Get PDF
    Dystonia is by far the most intrusive and invalidating extrapyramidal side effect of potent classical antipsychotic drugs. Antipsychotic drug-induced dystonia is classified in both acute and tardive forms. The incidence of drug-induced dystonia is associated with the affinity to inhibitory dopamine D2 receptors. Particularly acute dystonia can be treated with anticholinergic drugs, but the tardive form may also respond to such antimuscarinic treatment, which contrasts their effects in tardive dyskinesia. Combining knowledge of the pathophysiology of primary focal dystonia with the anatomical and pharmacological organization of the extrapyramidal system may shed some light on the mechanism of antipsychotic drug-induced dystonia. A suitable hypothesis is derived from the understanding that focal dystonia may be due to a faulty processing of somatosensory input, so leading to inappropriate execution of well-trained motor programmes. Neuroplastic alterations of the sensitivity of extrapyramidal medium-sized spiny projection neurons to stimulation, which are induced by the training of specific complex movements, lead to the sophisticated execution of these motor plans. The sudden and non-selective disinhibition of indirect pathway medium-sized spiny projection neurons by blocking dopamine D2 receptors may distort this process. Shutting down the widespread influence of tonically active giant cholinergic interneurons on all medium-sized spiny projection neurons by blocking muscarinic receptors may result in a reduction of the influence of extrapyramidal cortical-striatal-thalamic-cortical regulation. Furthermore, striatal cholinergic interneurons have an important role to play in integrating cerebellar input with the output of cerebral cortex, and are also targeted by dopaminergic nigrostriatal fibres affecting dopamine D2 receptors

    Role OF 5-HT2C receptors in dyskinesia

    Get PDF
    By integrating knowledge gained by pharmacogenetic, neuroanatomical and pharmacological studies, a model can be constructed how serotonin (5-HT) affects the vulnerability to induce tardive dyskinesia. From neuroanatomical studies, it can be concluded that 5-HT inhibits the release of dopamine (DA) within the dorsal striatum by affecting 5-HT2C receptors and also within the ventral striatum and prefrontal cortex by affecting 5-HT2A receptors. However, considering the low affinity of DA for its receptors, it is unlikely that the so released DA is able to displace atypical antipsychotics from DA D2 and D3 receptors. 5-HT2C receptors and, to a lesser extent, 5-HT2A receptors, have constitutive activity and therefore, atypical antipsychotics can have inverse agonistic effects. It is hypothesized that decreasing the activity of 5-HT2 receptor carrying medium spiny neurons (MSNs) within the dorsal striatum represents the mechanism showing how atypical antipsychotics have limited ability to cause tardive dyskinesia

    ROLE OF 5-HT2C RECEPTORS IN DYSKINESIA

    Get PDF
    By integrating knowledge gained by pharmacogenetic, neuroanatomical and pharmacological studies, a model can be constructed how serotonin (5-HT) affects the vulnerability to induce tardive dyskinesia. From neuroanatomical studies, it can be concluded that 5-HT inhibits the release of dopamine (DA) within the dorsal striatum by affecting 5-HT2C receptors and also within the ventral striatum and prefrontal cortex by affecting 5-HT2A receptors. However, considering the low affinity of DA for its receptors, it is unlikely that the so released DA is able to displace atypical antipsychotics from DA D2 and D3 receptors. 5-HT2C receptors and, to a lesser extent, 5-HT2A receptors, have constitutive activity and therefore, atypical antipsychotics can have inverse agonistic effects. It is hypothesized that decreasing the activity of 5-HT2 receptor carrying medium spiny neurons (MSNs) within the dorsal striatum represents the mechanism showing how atypical antipsychotics have limited ability to cause tardive dyskinesia.Â

    Putative role of vitamin D in the mechanism of alcoholism and other addictions - a hypothesis

    Get PDF
    OBJECTIVE: Vitamin D deficiency may be a clinical problem in patients with addictions. The authors systematically searched for studies addressing vitamin D and addiction and develop a hypothesis which can direct future research of the possible mechanistic role of vitamin D in the process of addiction. METHODS: Systematic review of the literature found in PubMed and EMBASE followed by narrative review combined with clinical experiences leading to hypotheses for future research. RESULTS: Only five articles were identified about a role of vitamin D in the pathophysiology of addiction. Their results are in line with a possible influence of vitamin D in dopaminergic transmission. The cerebral vitamin D status depends on the functionality of genetic variants of vitamin D receptor and other involved genes. Routine serum calcidiol levels may not adequately reflect cerebral vitamin D status. Uncertainty exists regarding appropriate calcidiol blood levels and proper dosages for affecting the central nervous system (CNS). CONCLUSIONS: The putative pathophysiological role of vitamin D in substance abuse has been insufficiently studied which calls to more studies how to measure cerebral vitamin D status in clinical practice. Research is indicated whether vitamin D supplementation should use higher dosages and aim to reach higher calcidiol serum levels. Measuring dopaminergic functioning within the prefrontal cortex as reflected by neuropsychological tests selected as suitable could be a appropriate proxy for the cerebral vitamin D status when studying the pharmacogenomics of this functionality in patients

    Zo zijn onze manieren

    Get PDF
    • …
    corecore