105 research outputs found

    Jet modification via π 0 -hadron correlations in Au+Au collisions at √sNN = 200 GeV

    Get PDF
    High-momentum two-particle correlations are a useful tool for studying jet-quenching effects in the quark-gluon plasma. Angular correlations between neutral-pion triggers and charged hadrons with transverse momenta in the range 4–12 GeV/c and 0.5–7 GeV/c, respectively, have been measured by the PHENIX experiment in 2014 for Au+Au collisions at √sNN = 200 GeV. Suppression is observed in the yield of high-momentum jet fragments opposite the trigger particle, which indicates jet suppression stemming from in-medium partonic energy loss, while enhancement is observed for low-momentum particles. The ratio and differences between the yield in Au+Au collisions and p+p collisions, IAA and ∆AA, as a function of the trigger-hadron azimuthal separation, ∆ϕ, are measured for the first time at the Relativistic Heavy Ion Collider. These results better quantify how the yield of low-pT associated hadrons is enhanced at wide angle, which is crucial for studying energy loss as well as medium-response effects

    Systematic study of nuclear effects in p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV using π 0 production

    Get PDF
    The PHENIX collaboration presents a systematic study of inclusive π 0 production from p+p, p+Al, p+Au, d+Au, and 3He+Au collisions at √sNN = 200 GeV. Measurements were performed with different centrality selections as well as the total inelastic, 0%–100%, selection for all collision systems. For 0%–100% collisions, the nuclear-modification factors, RxA, are consistent with unity for pT above 8 GeV/c, but exhibit an enhancement in peripheral collisions and a suppression in central collisions. The enhancement and suppression characteristics are similar for all systems for the same centrality class. It is shown that for high-pT -π 0 production, the nucleons in the d and 3He interact mostly independently with the Au nucleus and that the counter intuitive centrality dependence is likely due to a physical correlation between multiplicity and the presence of a hard scattering process. These observations disfavor models where parton energy loss has a significant contribution to nuclear modifications in small systems. Nuclear modifications at lower pT resemble the Cronin effect – an increase followed by a peak in central or inelastic collisions and a plateau in peripheral collisions. The peak height has a characteristic ordering by system size as p+Au > d+Au > 3He+Au > p+Al. For collisions with Au ions, current calculations based on initial state cold nuclear matter effects result in the opposite order, suggesting the presence of other contributions to nuclear modifications, in particular at lower pT

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Fine root chemistry and decomposition in model communities of north-temperate tree species show little response to elevated atmospheric CO 2 and varying soil resource availability

    Full text link
    Rising atmospheric [CO 2 ] has the potential to alter soil carbon (C) cycling by increasing the content of recalcitrant constituents in plant litter, thereby decreasing rates of decomposition. Because fine root turnover constitutes a large fraction of annual NPP, changes in fine root decomposition are especially important. These responses will likely be affected by soil resource availability and the life history characteristics of the dominant tree species. We evaluated the effects of elevated atmospheric [CO 2 ] and soil resource availability on the production and chemistry, mycorrhizal colonization, and decomposition of fine roots in an early- and late-successional tree species that are economically and ecologically important in north temperate forests. Open-top chambers were used to expose young trembling aspen ( Populus tremuloides ) and sugar maple ( Acer saccharum ) trees to ambient (36 Pa) and elevated (56 Pa) atmospheric CO 2 . Soil resource availability was composed of two treatments that bracketed the range found in the Upper Lake States, USA. After 2.5 years of growth, sugar maple had greater fine root standing crop due to relatively greater allocation to fine roots (30% of total root biomass) relative to aspen (7% total root biomass). Relative to the low soil resources treatment, aspen fine root biomass increased 76% with increased soil resource availability, but only under elevated [CO 2 ]. Sugar maple fine root biomass increased 26% with increased soil resource availability (relative to the low soil resources treatment), and showed little response to elevated [CO 2 ]. Concentrations of N and soluble phenolics, and C/N ratio in roots were similar for the two species, but aspen had slightly higher lignin and lower condensed tannins contents compared to sugar maple. As predicted by source-sink models of carbon allocation, pooled constituents (C/N ratio, soluble phenolics) increased in response to increased relative carbon availability (elevated [CO 2 ]/low soil resource availability), however, biosynthetically distinct compounds (lignin, starch, condensed tannins) did not always respond as predicted. We found that mycorrhizal colonization of fine roots was not strongly affected by atmospheric [CO 2 ] or soil resource availability, as indicated by root ergosterol contents. Overall, absolute changes in root chemical composition in response to increases in C and soil resource availability were small and had no effect on soil fungal biomass or specific rates of fine root decomposition. We conclude that root contributions to soil carbon cycling will mainly be influenced by fine root production and turnover responses to rising atmospheric [CO 2 ], rather than changes in substrate chemistry.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47710/1/442_2005_Article_191.pd

    A screening study of leaf terpene emissions of 43 rainforest species in Danum Valley Conservation Area (Borneo) and their relationships with chemical and morphological leaf traits

    Get PDF
    We have conducted a screening study of leaf terpene emissions for 43 rainforest woody species of Borneo. To the best of our knowledge, this study reports for first time the terpene emission capacity of 43 species belonging to 22 genera of rainforest woody plant species. We have used a general lineal model with phylogenetic control by the phylogenetic distance matrix when necessary. The proportion of the species that emitted terpenes in this set of Borneo woody species was 95% and the species average total terpene emissions of emitting species were 0.04–11.6 μg g− 1 h− 1, which is in the range of the reported emissions in similar screening studies conducted in other biomes. Altogether, 85 terpene compounds were detected, and 11 common monoterpenes and sesquiterpenes were identified and quantified. Only two of the terpenes, ocimene and γ-terpinene, of the 11 determined compounds showed a phylogenetic signal. No significant relationships were found between the terpene emissions and the physiological, chemical and morphological foliar traits and the data also showed a lock of constant applicability of the “excess carbon” hypothesis for this set of species. This evidence suggests multiple and diverse factors and conditions driving plant chemistry in the tropical forests

    Botanical Names

    Full text link

    A Study of Sleep Stages Threshold Based on Multiscale Fuzzy Entropy

    No full text
    corecore