6,674 research outputs found
Electron Radiation Damage of (alga) As-gaas Solar Cells
Solar cells (2 cm by 2 cm (AlGa) As-GaAs cells) were fabricated and then subjected to irradiation at normal incidence by electrons. The influence of junction depth and n-type buffer layer doping level on the cell's resistance to radiation damage was investigated. The study shows that (1) a 0.3 micrometer deep junction results in lower damage to the cells than does a 0.5 micrometer junction, and (2) lowering the n buffer layer doping density does not improve the radiation resistance of the cell. Rather, lowering the doping density decreases the solar cell's open circuit voltage. Some preliminary thermal annealing experiments in vacuum were performed on the (AlGa)As-GaAs solar cells damaged by 1-MeV electron irradiation. The results show that cell performance can be expected to partially recover at 200 C with more rapid and complete recovery occurring at higher temperature. For a 0.5hr anneal at 400 C, 90% of the initial power is recovered. The characteristics of the (AlGa)As-GaAs cells both before and after irradiation are described
Medium energy proton radiation damage to (AlGa)As-GaAs solar cells
The performance of (AlGa)As-GaAs solar cells irradiated by medium energy 2, 5, and 10 MeV protons was evaluated. The Si cells without coverglass and a number of GaAs solar cells with 12 mil coverglass were irradiated simultaneously with bare GaAs cells. The cell degradation is directly related to the penetration of depth of protons with GaAs. The influence of periodic and continuous thermal annealing on the GaAs solar cells was investigated
Generation of density inhomogeneities by magnetohydrodynamic waves in two dimensions
Using two dimensional simulations, we study the formation of structures with
a high-density contrast by magnetohydrodynamic waves in regions in which the
ratio of thermal to magnetic pressure is small. The initial state is a uniform
background perturbed by fast-mode wave. Our most significant result is that
dense structures persist for far longer in a two-dimensional simulation than in
the one-dimensional case. Once formed, these structures persist as long as the
fast-mode amplitude remains high.Comment: 6 pages, 7 figures, accepted by MNRA
GaAs solar cells for concentrator systems in space
Cells for operation in space up to more than 100 suns were made, and an AMO efficiency of 21% at 100 suns with these cells was obtained. The increased efficiency resulted not only from the higher open circuit voltage associated with the higher light intensity (higher short circuit current); it also benefitted from the increase in fill factor caused by the lower relative contribution of the generation recombination current to the forward bias current when the cell's operating current density is increased. The experimental cells exhibited an AMO efficiency close to 16% at 200 C. The prospect of exploiting this capability for the continuous annealing of radiation damage or for high temperature missions (e.g., near Sun missions) remains therefore open. Space systems with concentration ratios on the order of 100 suns are presently under development. The tradeoff between increased concentration ratio and increased loss due to the cell's series resistance remains attractive even for space applications at a solar concentrator ratio of 100 suns. In the design of contact configuration with low enough series resistance for such solar concentration ratios, the shallow junction depth needed for good radiation hardness and the thin AlGaAs layer thickness needed to avoid excessive optical absorption losses have to be retained
Mass transfer characteristics in structured packing for CO2 emission reduction processes
Acid gas treating and CO2 capture from flue gas by absorption have gained wide importance over the past few decades. With the implementation of more stringent environmental regulations and the awareness of the greenhouse effect, the need for efficient removal of acid gases such as CO2 (carbon dioxide) has increased significantly. Therefore, additional effort for research in this field is inevitable. For flue gas processes the ratio of absorption solvent to gas throughput is very different compared to acid gas treating processes owing to the atmospheric pressures and the dilution effect of combustion air. Moreover, in flue gas applications pressure drop is a very important process parameter. Packing types are required that allow for low pressure drop in combination with high interfacial areas at low liquid loading per square meter. The determination of interfacial areas in gas-liquid contactors by means of the chemical method (Danckwerts, P. V. Gas-liquid reactions; McGraw-Hill: London, 1970) has been very frequently applied. Unfortunately, many of the model systems proposed in the literature are reversible and therefore this condition possibly is not met. Versteeg et al. (Versteeg, G. F.; Kuipers, J. A. M.; Beckum, F. P. H.; van Swaaij, W. P. M. Chem. Eng. Sci. 1989, 44, 2292) have demonstrated that for reversible reactions the conditions for the determination of the interfacial area by means of the chemical method are much more severe. In a study by Raynal et al. (Raynal, L.; Ballaguet, J. P.; Berrere-Tricca, C. Chem. Eng. Sci. 2004, 59, 5395), it has been shown that there is a dependency of the interfacial area on the packing height. Unfortunately, most model systems used, e.g., CO2-caustic soda (as used by Raynal et al.), are much more complex and consist of (a set of) reversible reaction(s). The natures of these systems make the conditions at which the interfacial area can be determined much more severe and put more limitations on the process conditions and experimental equipment than a priori can be expected. Therefore, an extended absorption model is required to determine the conditions at which the interfacial area can be measured without detailed knowledge of the values of the liquid-side mass transfer coefficient, k1, beforehand.
A binary signature in the non-thermal radio-emitter Cyg OB2 #9
Aims: Non-thermal radio emission associated with massive stars is believed to
arise from a wind-wind collision in a binary system. However, the evidence of
binarity is still lacking in some cases, notably Cyg OB2 #9 Methods: For
several years, we have been monitoring this heavily-reddened star from various
observatories. This campaign allowed us to probe variations both on short and
long timescales and constitutes the first in-depth study of the visible
spectrum of this object. Results: Our observations provide the very first
direct evidence of a companion in Cyg OB2 #9, confirming the theoretical
wind-wind collision scenario. These data suggest a highly eccentric orbit with
a period of a few years, compatible with the 2yr-timescale measured in the
radio range. In addition, the signature of the wind-wind collision is very
likely reflected in the behaviour of some emission lines.Comment: accepted by A&A, 4 p, 3figure
Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit
We report measurements of a superconducting coplanar waveguide resonator
(CPWR) coupled to a sphere of yttrium-iron garnet. The non-uniform CPWR field
allows us to excite various magnon modes in the sphere. Mode frequencies and
relative coupling strengths are consistent with theory. Strong coupling is
observed to several modes even with, on average, less than one excitation
present in the CPWR. The time response to square pulses shows oscillations at
the mode splitting frequency. These results indicate the feasibility of
combining magnonic and planar superconducting quantum devices.Comment: 5 pages, 4 figure
Shock-triggered formation of magnetically-dominated clouds
To understand the formation of a magnetically dominated molecular cloud out
of an atomic cloud, we follow the dynamical evolution of the cloud with a
time-dependent axisymmetric magnetohydrodynamic code. A thermally stable warm
atomic cloud is initially in static equilibrium with the surrounding hot
ionised gas. A shock propagating through the hot medium interacts with the
cloud. As a fast-mode shock propagates through the cloud, the gas behind it
becomes thermally unstable. The value of the gas also becomes much
smaller than the initial value of order unity. These conditions are ideal for
magnetohydrodynamic waves to produce high-density clumps embedded in a rarefied
warm medium. A slow-mode shock follows the fast-mode shock. Behind this shock a
dense shell forms, which subsequently fragments. This is a primary region for
the formation of massive stars. Our simulations show that only weak and
moderate-strength shocks can form cold clouds which have properties typical of
giant molecular clouds.Comment: 7 pages, 6 figures, accepted by Astronomy and Astrophysic
An automated method for comparing motion artifacts in cine four-dimensional computed tomography images.
The aim of this study is to develop an automated method to objectively compare motion artifacts in two four-dimensional computed tomography (4D CT) image sets, and identify the one that would appear to human observers with fewer or smaller artifacts. Our proposed method is based on the difference of the normalized correlation coefficients between edge slices at couch transitions, which we hypothesize may be a suitable metric to identify motion artifacts. We evaluated our method using ten pairs of 4D CT image sets that showed subtle differences in artifacts between images in a pair, which were identifiable by human observers. One set of 4D CT images was sorted using breathing traces in which our clinically implemented 4D CT sorting software miscalculated the respiratory phase, which expectedly led to artifacts in the images. The other set of images consisted of the same images; however, these were sorted using the same breathing traces but with corrected phases. Next we calculated the normalized correlation coefficients between edge slices at all couch transitions for all respiratory phases in both image sets to evaluate for motion artifacts. For nine image set pairs, our method identified the 4D CT sets sorted using the breathing traces with the corrected respiratory phase to result in images with fewer or smaller artifacts, whereas for one image pair, no difference was noted. Two observers independently assessed the accuracy of our method. Both observers identified 9 image sets that were sorted using the breathing traces with corrected respiratory phase as having fewer or smaller artifacts. In summary, using the 4D CT data of ten pairs of 4D CT image sets, we have demonstrated proof of principle that our method is able to replicate the results of two human observers in identifying the image set with fewer or smaller artifacts
A QoS-based flow assignment for traffic engineering in software-defined networks
In order to meet a tremendous amount of data storage requirement in next-generation wireless networks, an increasing number of cloud data centers has been deployed around the world. The underlying core networks are expected to provide the ability to store data in a dynamic and scalable computing environment. The traditional Internet Protocol (IP) has shown to be restricted due to its static architecture, which accordingly motivates the development of Software-Defined Networks (SDNs). In the SDNs, Traffic Engineering (TE) is simpler and programmable with a controller without the requirement of reconfiguration for all network devices. However, the existing TE algorithm of the SDNs rejects a number of requested flows caused by their undetermined routing paths where only flow bandwidth is considered in path determination. This paper proposes a Quality-of-Service (QoS) based Flow Assignment algorithm which enables the computation of end-to-end path for traffic flows guaranteeing the QoS requirements including bandwidth, end-to-end delay and packet loss probability. Through the Open Source Hybrid IP/SDNs platform, the proposed algorithm is validated and shown to significantly reduce flow rejection rate of up to 50% compared to the conventional approach, and therefore can be used to implement an effective DiffServ mechanism for flow allocation in the SDNs
- …