5,399 research outputs found

    Mass transfer characteristics in structured packing for CO2 emission reduction processes

    Get PDF
    Acid gas treating and CO2 capture from flue gas by absorption have gained wide importance over the past few decades. With the implementation of more stringent environmental regulations and the awareness of the greenhouse effect, the need for efficient removal of acid gases such as CO2 (carbon dioxide) has increased significantly. Therefore, additional effort for research in this field is inevitable. For flue gas processes the ratio of absorption solvent to gas throughput is very different compared to acid gas treating processes owing to the atmospheric pressures and the dilution effect of combustion air. Moreover, in flue gas applications pressure drop is a very important process parameter. Packing types are required that allow for low pressure drop in combination with high interfacial areas at low liquid loading per square meter. The determination of interfacial areas in gas-liquid contactors by means of the chemical method (Danckwerts, P. V. Gas-liquid reactions; McGraw-Hill: London, 1970) has been very frequently applied. Unfortunately, many of the model systems proposed in the literature are reversible and therefore this condition possibly is not met. Versteeg et al. (Versteeg, G. F.; Kuipers, J. A. M.; Beckum, F. P. H.; van Swaaij, W. P. M. Chem. Eng. Sci. 1989, 44, 2292) have demonstrated that for reversible reactions the conditions for the determination of the interfacial area by means of the chemical method are much more severe. In a study by Raynal et al. (Raynal, L.; Ballaguet, J. P.; Berrere-Tricca, C. Chem. Eng. Sci. 2004, 59, 5395), it has been shown that there is a dependency of the interfacial area on the packing height. Unfortunately, most model systems used, e.g., CO2-caustic soda (as used by Raynal et al.), are much more complex and consist of (a set of) reversible reaction(s). The natures of these systems make the conditions at which the interfacial area can be determined much more severe and put more limitations on the process conditions and experimental equipment than a priori can be expected. Therefore, an extended absorption model is required to determine the conditions at which the interfacial area can be measured without detailed knowledge of the values of the liquid-side mass transfer coefficient, k1, beforehand.

    Adaptive Transmission Techniques for Mobile Satellite Links

    Full text link
    Adapting the transmission rate in an LMS channel is a challenging task because of the relatively fast time variations, of the long delays involved, and of the difficulty in mapping the parameters of a time-varying channel into communication performance. In this paper, we propose two strategies for dealing with these impairments, namely, multi-layer coding (MLC) in the forward link, and open-loop adaptation in the return link. Both strategies rely on physical-layer abstraction tools for predicting the link performance. We will show that, in both cases, it is possible to increase the average spectral efficiency while at the same time keeping the outage probability under a given threshold. To do so, the forward link strategy will rely on introducing some latency in the data stream by using retransmissions. The return link, on the other hand, will rely on a statistical characterization of a physical-layer abstraction measure.Comment: Presented at the 30th AIAA International Communications Satellite Systems Conference (ICSSC), Ottawa, Canada, 2012. Best Professional Paper Awar

    Strong coupling of magnons in a YIG sphere to photons in a planar superconducting resonator in the quantum limit

    Full text link
    We report measurements of a superconducting coplanar waveguide resonator (CPWR) coupled to a sphere of yttrium-iron garnet. The non-uniform CPWR field allows us to excite various magnon modes in the sphere. Mode frequencies and relative coupling strengths are consistent with theory. Strong coupling is observed to several modes even with, on average, less than one excitation present in the CPWR. The time response to square pulses shows oscillations at the mode splitting frequency. These results indicate the feasibility of combining magnonic and planar superconducting quantum devices.Comment: 5 pages, 4 figure

    Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests

    Get PDF
    There is a general trend of biodiversity loss at global, regional, national and local levels. To monitor this trend, international policy processes have created a wealth of indicators over the last two decades. However, genetic diversity indicators are regrettably absent from comprehensive bio-monitoring schemes. Here, we provide a review and an assessment of the different attempts made to provide such indicators for tree genetic diversity from the global level down to the level of the management unit. So far, no generally accepted indicators have been provided as international standards, nor tested for their possible use in practice. We suggest that indicators for monitoring genetic diversity and dynamics should be based on ecological and demographic surrogates of adaptive diversity as well as genetic markers capable of identifying genetic erosion and gene flow. A comparison of past and present genecological distributions (patterns of genetic variation of key adaptive traits in the ecological space) of selected species is a realistic way of assessing the trend of intra-specific variation, and thus provides a state indicator of tree genetic diversity also able to reflect possible pressures threatening genetic diversity. Revealing benefits of genetic diversity related to ecosystem services is complex, but current trends in plantation performance offer the possibility of an indicator of benefit. Response indicators are generally much easier to define, because recognition and even quantification of, e.g., research, education, breeding, conservation, and regulation actions and programs are relatively straightforward. Only state indicators can reveal genetic patterns and processes, which are fundamental for maintaining genetic diversity. Indirect indicators of pressure, benefit, or response should therefore not be used independently of state indicators. A coherent set of indicators covering diversity–productivity–knowledge–management based on the genecological approach is proposed for application on appropriate groups of tree species in the wild and in cultivation worldwide. These indicators realistically reflect the state, trends and potentials of the world’s tree genetic resources to support sustainable growth. The state of the genetic diversity will be based on trends in population distributions and diversity patterns for selected species. The productivity of the genetic resource of trees in current use will reflect the possible potential of mobilizing the resource further. Trends in knowledge will underpin the potential capacity for development of the resource and current management of the genetic resource itself will reveal how well we are actually doing and where improvements are required

    Preparation of Subradiant States using Local Qubit Control in Circuit QED

    Full text link
    Transitions between quantum states by photon absorption or emission are intimately related to symmetries of the system which lead to selection rules and the formation of dark states. In a circuit quantum electrodynamics setup, in which two resonant superconducting qubits are coupled through an on-chip cavity and driven via the common cavity field, one single-excitation state remains dark. Here, we demonstrate that this dark state can be excited using local phase control of individual qubit drives to change the symmetry of the driving field. We observe that the dark state decay via spontaneous emission into the cavity is suppressed, a characteristic signature of subradiance. This local control technique could be used to prepare and study highly correlated quantum states of cavity-coupled qubits.Comment: 5 pages, 4 figure

    Step-free railway station access in the UK: The value of inclusive design

    Get PDF
    Background: Despite substantial investment in step-free access at UK railway stations, persons with reduced mobility (PRMs) continue to travel less than their able-bodied counterparts and little is known about the value of step-free access. This research examines the benefits of step-free access and its relationship with rail usage among PRMs, and the wider benefits of railway station accessibility. Methods: These issues are explored through a mixed methods approach. Semi-structured interviews with ten key organisations were undertaken, as was an analysis of Senior/Disabled Persons Railcard data from 17 railway stations in Buckinghamshire, each with varying levels of step-free accessibility. Results: The results show that the benefits of step-free access extend beyond benefits at the individual level typically associated with those limited to PRMs, and demonstrate the potential to positively affect the society at large economically, environmentally, and socially. The findings also show a positive correlation between the level of step-free accessibility at a railway station and the percentage of PRMs using it. Conclusions: This research argues that government and interested stakeholders should commit to expanding the number and coverage of step-free stations throughout the UK. They should ensure that the appraisal process for investment in step-free accessibility appropriately captures both user and non-user benefits
    • …
    corecore