32 research outputs found

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    Incremental QBF Solving

    Full text link
    We consider the problem of incrementally solving a sequence of quantified Boolean formulae (QBF). Incremental solving aims at using information learned from one formula in the process of solving the next formulae in the sequence. Based on a general overview of the problem and related challenges, we present an approach to incremental QBF solving which is application-independent and hence applicable to QBF encodings of arbitrary problems. We implemented this approach in our incremental search-based QBF solver DepQBF and report on implementation details. Experimental results illustrate the potential benefits of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014, LNCS, Springer

    QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property

    Full text link
    The QRAT (quantified resolution asymmetric tautology) proof system simulates virtually all inference rules applied in state of the art quantified Boolean formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding and deleting clauses and universal literals that have a certain redundancy property. To check for this redundancy property in QRAT, propositional unit propagation (UP) is applied to the quantifier free, i.e., propositional part of the QBF. We generalize the redundancy property in the QRAT system by QBF specific UP (QUP). QUP extends UP by the universal reduction operation to eliminate universal literals from clauses. We apply QUP to an abstraction of the QBF where certain universal quantifiers are converted into existential ones. This way, we obtain a generalization of QRAT we call QRAT+. The redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT based on UP. We report on proof theoretical improvements and experimental results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer, including appendi

    Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API

    Full text link
    We consider the incremental computation of minimal unsatisfiable cores (MUCs) of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a novel API to allow for incremental solving based on clause groups. A clause group is a set of clauses which is incrementally added to or removed from a previously solved QBF. Our implementation of the novel API is related to incremental SAT solving based on selector variables and assumptions. However, the API entirely hides selector variables and assumptions from the user, which facilitates the integration of DepQBF in other tools. We present implementation details and, for the first time, report on experiments related to the computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in proceedings of SAT 2015, LNCS, Springe

    Structural Synthesis for GXW Specifications

    Full text link
    We define the GXW fragment of linear temporal logic (LTL) as the basis for synthesizing embedded control software for safety-critical applications. Since GXW includes the use of a weak-until operator we are able to specify a number of diverse programmable logic control (PLC) problems, which we have compiled from industrial training sets. For GXW controller specifications, we develop a novel approach for synthesizing a set of synchronously communicating actor-based controllers. This synthesis algorithm proceeds by means of recursing over the structure of GXW specifications, and generates a set of dedicated and synchronously communicating sub-controllers according to the formula structure. In a subsequent step, 2QBF constraint solving identifies and tries to resolve potential conflicts between individual GXW specifications. This structural approach to GXW synthesis supports traceability between requirements and the generated control code as mandated by certification regimes for safety-critical software. Synthesis for GXW specifications is in PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed our experimental results suggest that GXW synthesis scales well to industrial-sized control synthesis problems with 20 input and output ports and beyond.Comment: The long (including appendix) version being reviewed by CAV'16 program committee. Compared to the submitted version, one author (out of her wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an additional remark over environment assumption and easy corner case

    SAT-Based Synthesis Methods for Safety Specs

    Full text link
    Automatic synthesis of hardware components from declarative specifications is an ambitious endeavor in computer aided design. Existing synthesis algorithms are often implemented with Binary Decision Diagrams (BDDs), inheriting their scalability limitations. Instead of BDDs, we propose several new methods to synthesize finite-state systems from safety specifications using decision procedures for the satisfiability of quantified and unquantified Boolean formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on computational learning, templates, or reduction to first-order logic. We also present an efficient parallelization, and optimizations to utilize reachability information and incremental solving. Finally, we compare all methods in an extensive case study. Our new methods outperform BDDs and other existing work on some classes of benchmarks, and our parallelization achieves a super-linear speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1

    Evaluating QBF Solvers: Quantifier Alternations Matter

    Full text link
    We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer, including appendi

    On QBF Proofs and Preprocessing

    Full text link
    QBFs (quantified boolean formulas), which are a superset of propositional formulas, provide a canonical representation for PSPACE problems. To overcome the inherent complexity of QBF, significant effort has been invested in developing QBF solvers as well as the underlying proof systems. At the same time, formula preprocessing is crucial for the application of QBF solvers. This paper focuses on a missing link in currently-available technology: How to obtain a certificate (e.g. proof) for a formula that had been preprocessed before it was given to a solver? The paper targets a suite of commonly-used preprocessing techniques and shows how to reconstruct certificates for them. On the negative side, the paper discusses certain limitations of the currently-used proof systems in the light of preprocessing. The presented techniques were implemented and evaluated in the state-of-the-art QBF preprocessor bloqqer.Comment: LPAR 201

    Understanding and Extending Incremental Determinization for 2QBF

    Full text link
    Incremental determinization is a recently proposed algorithm for solving quantified Boolean formulas with one quantifier alternation. In this paper, we formalize incremental determinization as a set of inference rules to help understand the design space of similar algorithms. We then present additional inference rules that extend incremental determinization in two ways. The first extension integrates the popular CEGAR principle and the second extension allows us to analyze different cases in isolation. The experimental evaluation demonstrates that the extensions significantly improve the performance
    corecore