32 research outputs found
DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL
We present the latest major release version 6.0 of the quantified Boolean
formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of
the conflict-driven clause learning (CDCL) paradigm implemented in state of the
art propositional satisfiability (SAT) solvers. The Q-resolution calculus
(QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce
QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of
the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0
implements a variant of QCDCL which is based on a generalization of QRES. This
generalization is due to a set of additional axioms and leaves the original
Q-resolution rules unchanged. The generalization of QRES enables QCDCL to
potentially produce exponentially shorter proofs than the traditional variant.
We present an overview of the features implemented in DepQBF and report on
experimental results which demonstrate the effectiveness of generalized QRES in
QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS,
Springer, 201
Incremental QBF Solving
We consider the problem of incrementally solving a sequence of quantified
Boolean formulae (QBF). Incremental solving aims at using information learned
from one formula in the process of solving the next formulae in the sequence.
Based on a general overview of the problem and related challenges, we present
an approach to incremental QBF solving which is application-independent and
hence applicable to QBF encodings of arbitrary problems. We implemented this
approach in our incremental search-based QBF solver DepQBF and report on
implementation details. Experimental results illustrate the potential benefits
of incremental solving in QBF-based workflows.Comment: revision (camera-ready, to appear in the proceedings of CP 2014,
LNCS, Springer
QRAT+: Generalizing QRAT by a More Powerful QBF Redundancy Property
The QRAT (quantified resolution asymmetric tautology) proof system simulates
virtually all inference rules applied in state of the art quantified Boolean
formula (QBF) reasoning tools. It consists of rules to rewrite a QBF by adding
and deleting clauses and universal literals that have a certain redundancy
property. To check for this redundancy property in QRAT, propositional unit
propagation (UP) is applied to the quantifier free, i.e., propositional part of
the QBF. We generalize the redundancy property in the QRAT system by QBF
specific UP (QUP). QUP extends UP by the universal reduction operation to
eliminate universal literals from clauses. We apply QUP to an abstraction of
the QBF where certain universal quantifiers are converted into existential
ones. This way, we obtain a generalization of QRAT we call QRAT+. The
redundancy property in QRAT+ based on QUP is more powerful than the one in QRAT
based on UP. We report on proof theoretical improvements and experimental
results to illustrate the benefits of QRAT+ for QBF preprocessing.Comment: preprint of a paper to be published at IJCAR 2018, LNCS, Springer,
including appendi
Incrementally Computing Minimal Unsatisfiable Cores of QBFs via a Clause Group Solver API
We consider the incremental computation of minimal unsatisfiable cores (MUCs)
of QBFs. To this end, we equipped our incremental QBF solver DepQBF with a
novel API to allow for incremental solving based on clause groups. A clause
group is a set of clauses which is incrementally added to or removed from a
previously solved QBF. Our implementation of the novel API is related to
incremental SAT solving based on selector variables and assumptions. However,
the API entirely hides selector variables and assumptions from the user, which
facilitates the integration of DepQBF in other tools. We present implementation
details and, for the first time, report on experiments related to the
computation of MUCs of QBFs using DepQBF's novel clause group API.Comment: (fixed typo), camera-ready version, 6-page tool paper, to appear in
proceedings of SAT 2015, LNCS, Springe
Structural Synthesis for GXW Specifications
We define the GXW fragment of linear temporal logic (LTL) as the basis for
synthesizing embedded control software for safety-critical applications. Since
GXW includes the use of a weak-until operator we are able to specify a number
of diverse programmable logic control (PLC) problems, which we have compiled
from industrial training sets. For GXW controller specifications, we develop a
novel approach for synthesizing a set of synchronously communicating
actor-based controllers. This synthesis algorithm proceeds by means of
recursing over the structure of GXW specifications, and generates a set of
dedicated and synchronously communicating sub-controllers according to the
formula structure. In a subsequent step, 2QBF constraint solving identifies and
tries to resolve potential conflicts between individual GXW specifications.
This structural approach to GXW synthesis supports traceability between
requirements and the generated control code as mandated by certification
regimes for safety-critical software. Synthesis for GXW specifications is in
PSPACE compared to 2EXPTIME-completeness of full-fledged LTL synthesis. Indeed
our experimental results suggest that GXW synthesis scales well to
industrial-sized control synthesis problems with 20 input and output ports and
beyond.Comment: The long (including appendix) version being reviewed by CAV'16
program committee. Compared to the submitted version, one author (out of her
wish) is moved to the Acknowledgement. (v2) Corrected typos. (v3) Add an
additional remark over environment assumption and easy corner case
SAT-Based Synthesis Methods for Safety Specs
Automatic synthesis of hardware components from declarative specifications is
an ambitious endeavor in computer aided design. Existing synthesis algorithms
are often implemented with Binary Decision Diagrams (BDDs), inheriting their
scalability limitations. Instead of BDDs, we propose several new methods to
synthesize finite-state systems from safety specifications using decision
procedures for the satisfiability of quantified and unquantified Boolean
formulas (SAT-, QBF- and EPR-solvers). The presented approaches are based on
computational learning, templates, or reduction to first-order logic. We also
present an efficient parallelization, and optimizations to utilize reachability
information and incremental solving. Finally, we compare all methods in an
extensive case study. Our new methods outperform BDDs and other existing work
on some classes of benchmarks, and our parallelization achieves a super-linear
speedup. This is an extended version of [5], featuring an additional appendix.Comment: Extended version of a paper at VMCAI'1
Evaluating QBF Solvers: Quantifier Alternations Matter
We present an experimental study of the effects of quantifier alternations on
the evaluation of quantified Boolean formula (QBF) solvers. The number of
quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is
directly related to the theoretical hardness of the respective QBF
satisfiability problem in the polynomial hierarchy. We show empirically that
the performance of solvers based on different solving paradigms substantially
varies depending on the numbers of alternations in PCNFs. In related
theoretical work, quantifier alternations have become the focus of
understanding the strengths and weaknesses of various QBF proof systems
implemented in solvers. Our results motivate the development of methods to
evaluate orthogonal solving paradigms by taking quantifier alternations into
account. This is necessary to showcase the broad range of existing QBF solving
paradigms for practical QBF applications. Moreover, we highlight the potential
of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer,
including appendi
On QBF Proofs and Preprocessing
QBFs (quantified boolean formulas), which are a superset of propositional
formulas, provide a canonical representation for PSPACE problems. To overcome
the inherent complexity of QBF, significant effort has been invested in
developing QBF solvers as well as the underlying proof systems. At the same
time, formula preprocessing is crucial for the application of QBF solvers. This
paper focuses on a missing link in currently-available technology: How to
obtain a certificate (e.g. proof) for a formula that had been preprocessed
before it was given to a solver? The paper targets a suite of commonly-used
preprocessing techniques and shows how to reconstruct certificates for them. On
the negative side, the paper discusses certain limitations of the
currently-used proof systems in the light of preprocessing. The presented
techniques were implemented and evaluated in the state-of-the-art QBF
preprocessor bloqqer.Comment: LPAR 201
Understanding and Extending Incremental Determinization for 2QBF
Incremental determinization is a recently proposed algorithm for solving
quantified Boolean formulas with one quantifier alternation. In this paper, we
formalize incremental determinization as a set of inference rules to help
understand the design space of similar algorithms. We then present additional
inference rules that extend incremental determinization in two ways. The first
extension integrates the popular CEGAR principle and the second extension
allows us to analyze different cases in isolation. The experimental evaluation
demonstrates that the extensions significantly improve the performance