136 research outputs found
Square Patterns and Quasi-patterns in Weakly Damped Faraday Waves
Pattern formation in parametric surface waves is studied in the limit of weak
viscous dissipation. A set of quasi-potential equations (QPEs) is introduced
that admits a closed representation in terms of surface variables alone. A
multiscale expansion of the QPEs reveals the importance of triad resonant
interactions, and the saturating effect of the driving force leading to a
gradient amplitude equation. Minimization of the associated Lyapunov function
yields standing wave patterns of square symmetry for capillary waves, and
hexagonal patterns and a sequence of quasi-patterns for mixed capillary-gravity
waves. Numerical integration of the QPEs reveals a quasi-pattern of eight-fold
symmetry in the range of parameters predicted by the multiscale expansion.Comment: RevTeX, 11 pages, 8 figure
Water wave propagation and scattering over topographical bottoms
Here I present a general formulation of water wave propagation and scattering
over topographical bottoms. A simple equation is found and is compared with
existing theories. As an application, the theory is extended to the case of
water waves in a column with many cylindrical steps
Interaction of Nearly-Inviscid, Multi-mode Faraday Waves and Mean Flows
Faraday waves [1] are gravity-capillary waves that are excited on the surface of a fluid when its container is vibrated vertically and the vertical acceleration exceeds a threshold value. These waves have received much attention in the literature both as a basic fluid dynamical problem and as a paradigm of a pattern-forming system [2-4]. Unfortunately, in the low viscosity limit, there are several basic issues that remain unresolved, particularly in connection with the generation of mean flows in the bulk. The viscous part of these flows (also called streaming flow or acoustic streaming) is driven by the oscillatory boundary layers attached to the solid walls and the free surface by well-known mechanisms first uncovered by Schlichting [5] and Longuet-Higgins [6]. This mean flow has been shown recently to affect the dynamics of the primary waves at leading order in a related, laterally vibrated system [7]. This is somewhat similar to the effect of an internal circulation on surface wave dynamics in drops [8]
Nonlinear wave transmission and pressure on the fixed truncated breakwater using NURBS numerical wave tank
Fully nonlinear wave interaction with a fixed breakwater is investigated in a numerical wave tank (NWT). The potential theory and high-order boundary element method are used to solve the boundary value problem. Time domain simulation by a mixed Eulerian-Lagrangian (MEL) formulation and high-order boundary integral method based on non uniform rational B-spline (NURBS) formulation is employed to solve the equations. At each time step, Laplace equation is solved in Eulerian frame and fully non-linear free-surface conditions are updated in Lagrangian manner through material node approach and fourth order Runge-Kutta time integration scheme. Incident wave is fed by specifying the normal flux of appropriate wave potential on the fixed inflow boundary. To ensure the open water condition and to reduce the reflected wave energy into the computational domain, two damping zones are provided on both ends of the numerical wave tank. The convergence and stability of the presented numerical procedure are examined and compared with the analytical solutions. Wave reflection and transmission of nonlinear waves with different steepness are investigated. Also, the calculation of wave load on the breakwater is evaluated by first and second order time derivatives of the potential
Stochastic asymmetry properties of 3D gauss-lagrange ocean waves with directional spreading
In the stochastic Lagrange model for ocean waves the vertical and horizontal location of surface water particles are modeled as correlated Gaussian processes. In this article we investigate the statistical properties of wave characteristics related to wave asymmetry in the 3D Lagrange model. We present a modification of the original Lagrange model that can produce front-back asymmetry both of the space waves, i.e. observation of the sea surface at a fixed time, and of the time waves, observed at a fixed measuring station. The results, which are based on a multivariate form of Rice’s formula for the expected number of level crossings, are given in the form of the cumulative distribution functions for the slopes observed either by asynchronous sampling in space, or at synchronous sampling at upcrossings and down-crossings, respectively, of a specified fixed level. The theory is illustrated in a numerical section, showing how the degree of wave asymmetry depends on the directional spectral spreading and on the mean wave direction. It is seen that the asymmetry is more accentuated for high waves, a fact that may be of importance in safety analysis of capsizing risk
- …