32 research outputs found
Usutu virus infection in a patient who underwent orthotropic liver transplantation, Italy, August-September 2009.
We report a case of Usutu virus (USUV)-related illness in a patient that underwent an orthotropic liver transplant (OLT). Post transplant, the patient developed clinical signs of a possible neuroinvasive disease with a significant loss of cerebral functions. USUV was isolated in Vero E6 cells from a plasma sample obtained immediately before the surgery, and USUV RNA was demonstrated by RT-PCR and sequencing. This report enlarges the panel of emerging mosquito-borne flavivirus-related disease in humans
Characterizing the Sardinia candidate site for the Einstein Telescope
Due to its unique geophysical features and to the low density population of the area, Sos Enattos is a promising candidate site to host the Einstein Telescope (ET), the third-generation Gravitational Wave Observatory. The geophysical characterization of the Sos Enattos former mine, close to one of the proposed ET corners, started in 2010 with the deployment of seismic and environmental sensors underground. Since 2019 a new extensive array of seismometers, magnetometers and acoustic sensors have been installed in three stations along the underground tunnels, with one additional station at the surface. Beside a new geological survey over a wider area, two boreholes about 270 m deep each were excavated at the other two corners, determining the good quality of the drilled granite and orthogneiss rocks and the absence of significant thoroughgoing fault zones. These boreholes are instrumented with broadband seismometers that revealed an outstanding low level of vibrational noise in the low-frequency band of ET-LF (2-10Hz), significantly lower than the Peterson's NLNM and resulting among the quietest seismic stations in the world in that frequency band. The low seismic background and the reduced number of seismic glitches ensure that just a moderated Newtonian noise subtraction would be needed to achieve the ET target sensitivity. Geoelectrical and active seismic campaigns have been carried out to reveal the features of the subsurface, revealing the presence of small-sized fractured areas with limited water circulation. Finally, temporary arrays of seismometers, magnetometers and acoustic sensors are deployed in the area to study the local sources of environmental noise
Array analysis of seismic noise at the Sos Enattos mine, the Italian candidate site for the Einstein Telescope
The area surrounding the dismissed mine of Sos Enattos (Sardinia, Italy) is the Italian candidate site for hosting Einstein Telescope (ET), the third-generation gravitational wave (GW) observatory. One of the goals of ET is to extend the sensitivity down to frequencies well below those currently achieved by GW detectors, i.e. down to 2 Hz. In the bandwidth [1,10] Hz, the seismic noise of anthropogenic origin is expected to represent the major perturbation to the operation of the infrastructure, and the site that will host the future detector must fulfill stringent requirements on seismic disturbances. In this paper we describe the operation of a temporary, 15-element, seismic array deployed in close proximity to the mine. Signals of anthropogenic origin have a transient nature, and their spectra are characterized by a wide spectral lobe spanning the [3,20] Hz frequency interval. Superimposed to this wide lobe are narrow spectral peaks within the [3,8] Hz frequency range. Results from slowness analyses suggest that the origin of these peaks is related to vehicle traffic along the main road running east of the mine. Exploiting the correlation properties of seismic noise, we derive a dispersion curve for Rayleigh waves, which is then inverted for a shallow velocity structure down to depths of ââ 150 m. This data, which is consistent with that derived from analysis of a quarry blast, provide a first assessment of the elastic properties of the rock materials at the site candidate to hosting ET
Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19.
Objectives To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Methods Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Results Mean gestational age at diagnosis was 30.6+/-9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; pPeer reviewe
An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts
Fast radio bursts (FRBs) are millisecond radio pulses originating from powerful enigmatic sources at extragalactic distances. Neutron stars with large magnetic fields (magnetars) have been considered as the sources powering the FRBs, but the connection requires further substantiation. Here we report the detection by the AGILE satellite on 28 April 2020 of an X-ray burst in temporal coincidence with a bright FRB-like radio burst from the Galactic magnetar SGR 1935+2154. The burst observed in the hard X-ray band (18-60 keV) lasted about 0.5 s, it is spectrally cut off above 80 keV and implies an isotropically emitted energy of about 1040 erg. This event demonstrates that a magnetar can produce X-ray bursts in coincidence with FRB-like radio bursts. It also suggests that FRBs associated with magnetars can emit X-ray bursts. We discuss SGR 1935+2154 in the context of FRBs with low-intermediate radio energies in the range 1038-1040 erg. Magnetars with magnetic fields B â 1015 G may power these FRBs, and new data on the search for X-ray emission from FRBs are presented. We constrain the bursting X-ray energy of the nearby FRB 180916 to be less than 1046 erg, smaller than that observed in giant flares from Galactic magnetars
ASTRI Mini-Array core science at the Observatorio del Teide
The ASTRI (Astrofisica con Specchi a Tecnologia Replicante Italiana) Project led by the Italian National Institute for Astrophysics (INAF) is developing and will deploy at the Observatorio del Teide a mini-array (ASTRI Mini-Array) composed of nine telescopes similar to the small-size dual-mirror Schwarzschild-Couder telescope (ASTRI-Horn) currently operating on the slopes of Mt. Etna in Sicily. The ASTRI Mini-Array will surpass the current Cherenkov telescope array differential sensitivity above a few tera-electronvolt (TeV), extending the energy band well above hundreds of TeV. This will allow us to explore a new window of the electromagnetic spectrum, by convolving the sensitivity performance with excellent angular and energy resolution figures. In this paper we describe the Core Science that we will address during the first four years of operation, providing examples of the breakthrough results that we will obtain when dealing with current open questions, such as the acceleration of cosmic rays, cosmology and fundamental physics and the new window, for the TeV energy band, of the time-domain astrophysics
The 2009 december gamma-ray flare of 3C 454.3: The multifrequency campaign
During the month of 2009 December, the blazar 3C 454.3 became the brightest gamma-ray source in the sky, reaching a peak flux F 2000 à 10 -8 photons cm-2 s-1 for E > 100 MeV. Starting in 2009 November intensive multifrequency campaigns monitored the 3C 454 gamma-ray outburst. Here, we report on the results of a two-month campaign involving AGILE, INTEGRAL, Swift/XRT, Swift/BAT, and Rossi XTE for the high-energy observations and Swift/UVOT, KANATA, Goddard Robotic Telescope, and REM for the near-IR/optical/UV data. GASP/WEBT provided radio and additional optical data. We detected a long-term active emission phase lasting 1 month at all wavelengths: in the gamma-ray band, peak emission was reached on 2009 December 2-3. Remarkably, this gamma-ray super-flare was not accompanied by correspondingly intense emission in the optical/UV band that reached a level substantially lower than the previous observations in 2007-2008. The lack of strong simultaneous optical brightening during the super-flare and the determination of the broadband spectral evolution severely constrain the theoretical modeling. We find that the pre- and post-flare broadband behavior can be explained by a one-zone model involving synchrotron self-Compton plus external Compton emission from an accretion disk and a broad-line region. However, the spectra of the 2009 December 2-3 super-flare and of the secondary peak emission on 2009 December 9 cannot be satisfactorily modeled by a simple one-zone model. An additional particle component is most likely active during these states. © 2010. The American Astronomical Society. All rights reserved
AGILE detection of a rapid Îł-ray flare from the blazar PKS 1510-089 during the GASP-WEBT monitoring
We report the detection by the AGILE satellite of a rapid gamma-ray flare
from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on
the Galactic Center region from 1 March to 30 March 2008. This source has been
continuosly monitored in the radio-to-optical bands by the GLAST-AGILE Support
Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the
gamma-ray flaring episode triggered three ToO observations by the Swift
satellite in three consecutive days, starting from 20 March 2008. In the period
1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a
significance level of 6.2-sigma with an average flux over the entire period of
(84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV.
After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE
detected the source at a significance level of 7.3-sigma, with an average flux
(E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level
of (281 +/- 68) x 10^{-8} photons cm^{-2} s^{-1} with daily integration. During
the observing period January-April 2008, the source also showed an intense and
variable optical activity, with several flaring episodes and a significant
increase of the flux was observed at millimetric frequencies. Moreover, in the
X-ray band the Swift/XRT observations seem to show an harder-when-brighter
behaviour of the source spectrum. The spectral energy distribution of mid-March
2008 is modelled with a homogeneous one-zone synchrotron self Compton emission
plus contributions from inverse Compton scattering of external photons from
both the accretion disc and the broad line region. Indeed, some features in the
optical-UV spectrum seem to indicate the presence of Seyfert-like components,
such as the little blue bump and the big blue bump
AGILE detection of extreme Îł -ray activity from the blazar PKS 1510-089 during March 2009: Multifrequency analysis
We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089
observed by AGILE in March 2009. In the same period a radio-to-optical
monitoring of the source was provided by the GASP-WEBT and REM. Moreover,
several Swift ToO observations were triggered, adding important information on
the source behaviour from optical/UV to hard X-rays. We paid particular
attention to the calibration of the Swift/UVOT data to make it suitable to the
blazars spectra. Simultaneous observations from radio to gamma rays allowed us
to study in detail the correlation among the emission variability at different
frequencies and to investigate the mechanisms at work. In the period 9-30 March
2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2
s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on
daily integration. The gamma-ray activity occurred during a period of
increasing activity from near-IR to UV, with a flaring episode detected on
26-27 March 2009, suggesting that a single mechanism is responsible for the
flux enhancement observed from near-IR to UV. By contrast, Swift/XRT
observations seem to show no clear correlation of the X-ray fluxes with the
optical and gamma-ray ones. However, the X-ray observations show a harder
photon index (1.3-1.6) with respect to most FSRQs and a hint of
harder-when-brighter behaviour, indicating the possible presence of a second
emission component at soft X-ray energies. Moreover, the broad band spectrum
from radio-to-UV confirmed the evidence of thermal features in the optical/UV
spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand,
during 25-26 March 2009 a flat spectrum in the optical/UV energy band was
observed, suggesting an important contribution of the synchrotron emission in
this part of the spectrum during the brightest gamma-ray flare, therefore a
significant shift of the synchrotron peak
Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection.
OBJECTIVES: To evaluate the maternal and perinatal outcomes of pregnancies affected by SARS-CoV-2 infection. METHODS: This was a multinational retrospective cohort study including women with a singleton pregnancy and laboratory-confirmed SARS-CoV-2 infection, conducted in 72 centers in 22 different countries in Europe, the USA, South America, Asia and Australia, between 1 February 2020 and 30 April 2020. Confirmed SARS-CoV-2 infection was defined as a positive result on real-time reverse-transcription polymerase chain reaction (RT-PCR) assay of nasopharyngeal swab specimens. The primary outcome was a composite measure of maternal mortality and morbidity, including admission to the intensive care unit (ICU), use of mechanical ventilation and death. RESULTS: In total, 388 women with a singleton pregnancy tested positive for SARS-CoV-2 on RT-PCR of a nasopharyngeal swab and were included in the study. Composite adverse maternal outcome was observed in 47/388 (12.1%) women; 43 (11.1%) women were admitted to the ICU, 36 (9.3%) required mechanical ventilation and three (0.8%) died. Of the 388 women included in the study, 122 (31.4%) were still pregnant at the time of data analysis. Among the other 266 women, six (19.4% of the 31 women with first-trimester infection) had miscarriage, three (1.1%) had termination of pregnancy, six (2.3%) had stillbirth and 251 (94.4%) delivered a liveborn infant. The rate of preterm birth before 37âweeks' gestation was 26.3% (70/266). Of the 251 liveborn infants, 69/251 (27.5%) were admitted to the neonatal ICU, and there were five (2.0%) neonatal deaths. The overall rate of perinatal death was 4.1% (11/266). Only one (1/251, 0.4%) infant, born to a mother who tested positive during the third trimester, was found to be positive for SARS-CoV-2 on RT-PCR. CONCLUSIONS: SARS-CoV-2 infection in pregnant women is associated with a 0.8% rate of maternal mortality, but an 11.1% rate of admission to the ICU. The risk of vertical transmission seems to be negligible. © 2020 International Society of Ultrasound in Obstetrics and Gynecology