758 research outputs found

    Tandem androgenic and psychological shifts in male reproductive effort following a manipulated “win” or “loss” in a sporting competition

    Get PDF
    © 2018, The Author(s). Male-male competition is involved in inter- and intrasexual selection, with both endocrine and psychological factors presumably contributing to reproductive success in human males. We examined relationships among men’s naturally occurring testosterone, their self-perceived mate value (SPMV), self-esteem, sociosexuality, and expected likelihood of approaching attractive women versus situations leading to child involvement. We then monitored changes in these measures in male rowers (N = 38) from Cambridge, UK, following a manipulated “win” or “loss” as a result of an indoor rowing contest. Baseline results revealed that men with heightened testosterone and SPMV values typically had greater inclinations toward engaging in casual sexual relationships and a higher likelihood of approaching attractive women in a hypothetical social situation. As anticipated, both testosterone and SPMV increased following a manipulated “victory” and were associated with heightened sociosexuality, and increased expectations toward approaching attractive women versus individuals who would involve them in interacting with children after the race. SPMV and self-esteem appeared to mediate some of the effects of testosterone on post-race values. These findings are considered in the broader context of individual trade-offs between mating and parental effort and a model of the concurrent and dynamic androgenic and psychological influences contributing to male reproductive effort and success

    Local birthing services for rural women: Adaptation of a rural New South Wales maternity service.

    Full text link
    OBJECTIVE: To describe the outcomes of a public hospital maternity unit in rural New South Wales (NSW) following the adaptation of the service from an obstetrician and general practitioner-obstetrician (GPO)-led birthing service to a low-risk midwifery group practice (MGP) model of care with a planned caesarean section service (PCS). DESIGN: A retrospective descriptive study using quantitative methodology. SETTING: Maternity unit in a small public hospital in rural New South Wales, Australia. PARTICIPANTS: Data were extracted from the ward-based birth register for 1172 births at the service between July 2007 and June 2012. MAIN OUTCOME MEASURES: Birth numbers, maternal characteristics, labour, birthing and neonatal outcomes. RESULTS: There were 750 births over 29 months in GPO and 277 and 145 births over 31 months in MGP and PCS, respectively, totalling 422 births following the change in model of care. The GPO had 553 (73.7%) vaginal births and 197 (26.3%) caesarean section (CS) births (139 planned and 58 unplanned). There were almost universal normal vaginal births in MGP (>99% or 276). For normal vaginal births, more women in MGP had no analgesia (45.3% versus 25.1%) or non-invasive analgesia (47.9% versus 38.6%) and episiotomy was less common in MGP than GPO (1.9% versus 3.4%). Neonatal outcomes were similar for both groups with no difference between Apgar scores at 5 min, neonatal resuscitations or transfer to high-level special care nurseries. CONCLUSION: This study demonstrates how a rural maternity service maintained quality care outcomes for low-risk women following the adaptation from a GPO to an MGP service

    Study of Foaming Properties and Effect of the Isomeric Distribution of Some Anionic Surfactants

    Get PDF
    Using different reaction conditions of photosulfochlorination of n-dodecane, two samples of anionic surfactants of sulfonate type are obtained. Their micellar behavior has been already reported and the relationship between their isomeric distribution and their chemical structures and micellar behaviors have been more thoroughly explored. In this investigation, we screened the foaming properties (foaming power and foam stability) by a standardized method very similar to the Ross–Miles foaming tests to identify which surfactants are suitable for applications requiring high foaming, or, alternatively, low foaming. The results obtained for the synthesized surfactants are compared to those obtained for an industrial sample of secondary alkanesulfonate (Hostapur 60) and to those of a commercial sample of sodium dodecylsulfate used as reference for anionic surfactants. The foam formation and foam stability of aqueous solutions of the two samples of dodecanesulfonate are compared as a function of their isomeric distribution. These compounds show good foaming power characterized in most cases by metastable or dry foams. The highest foaming power is obtained for the sample rich in primary isomers which also produces foam with a relatively high stability. For the sample rich in secondary isomers we observe under fixed conditions a comparable initial foam height but the foam stability turns out to be low. This property is interesting for applications requiring low foaming properties such as dishwashing liquid for machines. The best results are observed near and above the critical micellar concentrations and at 25 C for both the samples

    Regulation of cardiomyocyte DNA damage and cell death by the type 2A protein phosphatase regulatory protein alpha4

    Get PDF
    The type 2A protein phosphatase regulatory protein alpha4 (α4) constitutes an anti-apoptotic protein in non-cardiac tissue, however it’s anti-apoptotic properties in the heart are poorly defined. To this end, we knocked down α4 protein expression (α4 KD) using siRNA in cultured H9c2 cardiomyocytes and confirmed the lack of DNA damage/cell death by TUNEL staining and MTT assay. However, α4 KD did increase the phosphorylation of p53 and ATM/ATR substrates, decreased the expression of poly ADP-ribose polymerase and associated fragments. Expression of anti-apoptotic proteins Bcl-2 and Bcl-xL was reduced, whereas expression of pro-apoptotic BAX protein did not change. Alpha4 KD reduced basal H2AX Ser139 phosphorylation, whereas adenoviral-mediated re-expression of α4 protein following α4 KD, restored basal H2AX phosphorylation at Ser139. The sensitivity of H9c2 cardiomyocytes to doxorubicin-induced DNA damage and cytotoxicity was augmented by α4 KD. Adenoviral-mediated overexpression of α4 protein in ARVM increased PP2AC expression and augmented H2AX Ser139 phosphorylation in response to doxorubicin. Furthermore, pressure overload-induced heart failure was associated with reduced α4 protein expression, increased ATM/ATR protein kinase activity, increased H2AX expression and Ser139 phosphorylation. Hence, this study describes the significance of altered α4 protein expression in the regulation of DNA damage, cardiomyocyte cell death and heart failure

    An integrated analysis and comparison of serum, saliva and sebum for COVID-19 metabolomics.

    Get PDF
    The majority of metabolomics studies to date have utilised blood serum or plasma, biofluids that do not necessarily address the full range of patient pathologies. Here, correlations between serum metabolites, salivary metabolites and sebum lipids are studied for the first time. 83 COVID-19 positive and negative hospitalised participants provided blood serum alongside saliva and sebum samples for analysis by liquid chromatography mass spectrometry. Widespread alterations to serum-sebum lipid relationships were observed in COVID-19 positive participants versus negative controls. There was also a marked correlation between sebum lipids and the immunostimulatory hormone dehydroepiandrosterone sulphate in the COVID-19 positive cohort. The biofluids analysed herein were also compared in terms of their ability to differentiate COVID-19 positive participants from controls; serum performed best by multivariate analysis (sensitivity and specificity of 0.97), with the dominant changes in triglyceride and bile acid levels, concordant with other studies identifying dyslipidemia as a hallmark of COVID-19 infection. Sebum performed well (sensitivity 0.92; specificity 0.84), with saliva performing worst (sensitivity 0.78; specificity 0.83). These findings show that alterations to skin lipid profiles coincide with dyslipidaemia in serum. The work also signposts the potential for integrated biofluid analyses to provide insight into the whole-body atlas of pathophysiological conditions

    Prenatal muscle development in a mouse model for the secondary dystroglycanopathies

    Get PDF
    The defective glycosylation of α-dystroglycan is associated with a group of muscular dystrophies that are collectively referred to as the secondary dystroglycanopathies. Mutations in the gene encoding fukutin-related protein (FKRP) are one of the most common causes of secondary dystroglycanopathy in the UK and are associated with a wide spectrum of disease. Whilst central nervous system involvement has a prenatal onset, no studies have addressed prenatal muscle development in any of the mouse models for this group of diseases. In view of the pivotal role of α-dystroglycan in early basement membrane formation, we sought to determine if the muscle formation was altered in a mouse model of FKRP-related dystrophy

    Modeling the Effects of Late Cycle Oxygen Enrichment on Diesel Engine Combustion and Emissions

    Full text link
    A multidimensional simulation of Auxiliary Gas Injection (AGI) for late cycle oxygen enrichment was exercised to assess the merits of AGI for reducing the emissions of soot from heavy duty diesel engines while not adversely affecting the NO{sub x} emissions of the engine. Here, AGI is the controlled enhancement of mixing within the diesel engine combustion chamber by high speed jets of air or another gas. The engine simulated was a Caterpillar 3401 engine. For a particular operating condition of this engine, the simulated soot emissions of the engine were reduced by 80% while not significantly affecting the engine-out NO{sub x} emissions compared to the engine operating without AGI. The effects of AGI duration, timing, and orientation are studied to confirm the window of opportunity for realizing lower engine-out soot while not increasing engine out NO{sub x} through controlled enhancement of in-cylinder mixing. These studies have shown that this window occurs during the late combustion cycle, from 20 to 60 crank angle degrees after top-dead-center. During this time, the combustion chamber temperatures are sufficiently high that soot oxidation increases in response in increased mixing, but the temperature is low enough that NO{sub x} reactions are quenched. The effect of the oxygen composition of the injected air is studied for the range of compositions between 21% and 30% oxygen by volume. This is the range of oxygen enrichment that is practical to produce from an air separation membrane. Simulations showed that this level of oxygen enrichment is insufficient to provide an additional benefit by either increasing the level of soot oxidation or prolonging the window of opportunity for increasing soot oxidation through enhanced mixing

    Transient mobilization of subcrustal carbon coincident with Palaeocene–Eocene Thermal Maximum

    Get PDF
    Plume magmatism and continental breakup led to the opening of the northeast Atlantic Ocean during the globally warm early Cenozoic. This warmth culminated in a transient (170 thousand year, kyr) hyperthermal event associated with a large, if poorly constrained, emission of carbon called the Palaeocene–Eocene Thermal Maximum (PETM) 56 million years ago (Ma). Methane from hydrothermal vents in the coeval North Atlantic Igneous Province (NAIP) has been proposed as the trigger, though isotopic constraints from deep sea sediments have instead implicated direct volcanic carbon dioxide (CO2) emissions. Here we calculate that background levels of volcanic outgassing from mid-ocean ridges and large igneous provinces yield only one-fifth of the carbon required to trigger the hyperthermal. However, geochemical analyses of volcanic sequences spanning the rift-to-drift phase of the NAIP indicate a sudden ~220 kyr-long intensification of magmatic activity coincident with the PETM. This was likely driven by thinning and enhanced decompression melting of the sub-continental lithospheric mantle, which critically contained a high proportion of carbon-rich metasomatic carbonates. Melting models and coupled tectonic–geochemical simulations indicate that >104 gigatons of subcrustal carbon was mobilized into the ocean and atmosphere sufficiently rapidly to explain the scale and pace of the PETM
    • 

    corecore