3 research outputs found

    Non-Isothermal Crystallization Kinetics of Poly(ethylene glycol) and Poly(ethylene glycol)-B-Poly(ε-caprolactone) by Flash DSC Analysis

    No full text
    The non-isothermal crystallization behaviors of poly (ethylene glycol) (PEG) and poly (ethylene glycol)-b-poly(ε-caprolactone) (PEG-PCL) were investigated through a commercially available chip-calorimeter Flash DSC2+. The non-isothermal crystallization data under different cooling rates were analyzed by the Ozawa model, modified Avrami model, and Mo model. The results of the non-isothermal crystallization showed that the PCL block crystallized first, followed by the crystallization of the PEG block when the cooling rate was 50–200 K/s. However, only the PEG block can crystallize when the cooling rate is 300–600 K/s. The crystallization of PEG-PCL is completely inhibited when the cooling rate is 1000 K/s. The modified Avrami and Ozawa models were found to describe the non-isothermal crystallization processes well. The growth methods of PEG and PEG-PCL are both three-dimensional spherulitic growth. The Mo model shows that the crystallization rate of PEG is greater than that of PEG-PCL

    Observation of Anti- P T -Symmetry Phase Transition in the Magnon-Cavity-Magnon Coupled System

    No full text
    As the counterpart of PT symmetry, for anti-PT-symmetry abundant phenomena and potential applications have been predicted or demonstrated theoretically. However, experimental realization of the coupling required in anti-PT symmetry is difficult. By our coupling two yttrium iron garnet spheres commonly to a microwave cavity, the large cavity dissipation rate makes the magnon-magnon coupling dissipative and purely imaginary. Thereby, the hybrid magnon-cavity system obeys a two-dimensional anti-PT Hamiltonian. In terms of the magnon-readout method, the method adopted here, we demonstrate the validity of our method in constructing an anti-PT system and present the counterintuitive level-attraction process. Our work provides a platform to explore the anti-PT-symmetry properties and paves the way to study dynamical evolution and topological properties around exceptional points in multimagnon-cavity systems.Peer reviewe

    Phase-Controlled Pathway Interferences and Switchable Fast-Slow Light in a Cavity-Magnon Polariton System

    No full text
    Funding Information: This work is supported by the National Key R&D Program of China (Grant No. 2018YFA0306600), the CAS (Grants No. GJJSTD20170001 and No. QYZDY-SSW-SLH004), Anhui Initiative in Quantum Information Technologies (Grant No. AHY050000), and the Natural Science Foundation of China (NSFC) (Grant No. 12004044). F.N. is supported in part by: NTT Research, Army Research Office (ARO) (Grant No. W911NF-18-1-0358), Japan Science and Technology Agency (JST) (via the CREST Grant No. JPMJCR1676), Japan Society for the Promotion of Science (JSPS) (via the KAKENHI Grant No. and the JSPS-RFBR Grant No. JPJSBP120194828), the Asian Office of Aerospace Research and Development (AOARD), and the Foundational Questions Institute Fund (FQXi) via Grant No. FQXi-IAF19-06. Publisher Copyright: © 2021 American Physical Society. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.We study the phase-controlled transmission properties in a compound system consisting of a three-dimensional copper cavity and an yttrium-iron-garnet (YIG) sphere. By tuning the relative phase of the magnon pumping and cavity-probe tones, constructive and destructive interferences occur periodically, which strongly modify both the cavity-field transmission spectra and the group delay of light. Moreover, the tunable amplitude ratio between pump-probe tones allows us to further improve the signal absorption or amplification, accompanied by either significantly enhanced optical advance or delay. Both the phase and amplitude ratio can be used to realize in situ tunable and switchable fast-slow light. The tunable phase and amplitude ratio lead to the zero reflection of the transmitted light and an abrupt fast-slow light transition. Our results confirm that direct magnon pumping through the coupling loops provides a versatile route to achieve controllable signal transmission, storage, and communication, which can be further expanded to the quantum regime, realizing coherent-state processing or quantum-limited precise measurements.Peer reviewe
    corecore