110 research outputs found

    Is the structure of 42Si understood?

    Get PDF
    A more detailed test of the implementation of nuclear forces that drive shell evolution in the pivotal nucleus \nuc{42}{Si} -- going beyond earlier comparisons of excited-state energies -- is important. The two leading shell-model effective interactions, SDPF-MU and SDPF-U-Si, both of which reproduce the low-lying \nuc{42}{Si}(21+2^+_1) energy, but whose predictions for other observables differ significantly, are interrogated by the population of states in neutron-rich \nuc{42}{Si} with a one-proton removal reaction from \nuc{43}{P} projectiles at 81~MeV/nucleon. The measured cross sections to the individual \nuc{42}{Si} final states are compared to calculations that combine eikonal reaction dynamics with these shell-model nuclear structure overlaps. The differences in the two shell-model descriptions are examined and linked to predicted low-lying excited 0+0^+ states and shape coexistence. Based on the present data, which are in better agreement with the SDPF-MU calculations, the state observed at 2150(13)~keV in \nuc{42}{Si} is proposed to be the (02+0^+_2) level.Comment: accepted in Physical Review Letter

    Infrared multiphoton dissociation of two perfluorobutenes

    Get PDF
    Photofragment translational spectroscopy was used to examine the infrared multiphotondissociation of octafluoro-1-butene and octafluoro-2-butene. The predominant unimolecular reaction in octafluoro-1-butene at moderate laser fluences is cleavage of a carbon–carbon single bond to give the products CF3 and C3F5. The two other reactions that take place are CF2 elimination and the formation of equal weight fragments with the chemical compositionC2F4; both reactions take place via a diradical intermediate. Dissociation of octafluoro-1-butene to the resonance stabilized perfluoroallyl radical is suggested to account for the favoring of simple bond rupture. These three reaction pathways were also observed in octafluoro-2-butene dissociation, however, the branching fraction is different than from octafluoro-1-butene. In octafluoro-2-butene all three channels occur with roughly equal probability. The reactions involving CF2 loss and C2F4 formation in octafluoro-2-butene are thought to proceed through the same diradical intermediate as in octafluoro-1-butene, necessitating a 1,2-fluorine migration

    Probing the role of proton cross-shell excitations in Ni 70 using nucleon knockout reactions

    Get PDF
    The neutron-rich Ni isotopes have attracted attention in recent years because of the occurrence of shape or configuration coexistence. We report on the difference in population of excited final states in Ni70 following γ-ray tagged one-proton, one-neutron, and two-proton knockout from Cu71, Ni71, and Zn72 rare-isotope beams, respectively. Using variations observed in the relative transition intensities, signaling the changed population of specific final states in the different reactions, the role of neutron and proton configurations in excited states of Ni70 is probed schematically, with the goal of identifying those that carry, as leading configuration, proton excitations across the Z=28 shell closure. Such states are suggested in the literature to form a collective structure associated with prolate deformation. Adding to the body of knowledge for Ni70, 29 new transitions are reported, of which 15 are placed in its level scheme

    The Beta-decay Paul Trap Mk IV: Design and commissioning

    Full text link
    The Beta-decay Paul Trap is an open-geometry, linear trap used to measure the decays of 8^8Li and 8^8B to search for a tensor contribution to the weak interaction. In the latest 8^8Li measurement of Burkey et al. (2022), β\beta scattering was the dominant experimental systematic uncertainty. The Beta-decay Paul Trap Mk IV reduces the prevalence of β\beta scattering by a factor of 4 through a redesigned electrode geometry and the use of glassy carbon and graphite as electrode materials. The trap has been constructed and successfully commissioned with 8^8Li in a new data campaign that collected 2.6 million triple coincidence events, an increase in statistics by 30% with 4 times less β\beta scattering compared to the previous 8^8Li data set.Comment: 17 pages, 7 figure

    Low spin spectroscopy of neutron-rich 43,44,45Cl via {\beta} and (\beta}n decay

    Full text link
    {\beta} decay of neutron-rich isotopes 43,45 S,studied at the National Superconducting Cyclotron Laboratory is reported here. {\beta} delayed {\gamma} transitions were detected by an array of 16 clover detectors surrounding the Beta Counting Station which consists of a 40x40 Double Sided Silicon Strip Detector followed by a Single Sided Silicon Strip Detector. {\beta} decay half-lives have been extracted for 43,45 S by correlating implants and decays in the pixelated implant detector with further coincidence with {\gamma} transitions in the daughter nucleus. The level structure of 43,45 Cl is expanded by the addition of 20 new {\gamma} transitions in 43Cl and 8 in 45 Cl with the observation of core excited negative-parity states for the first time. For 45 S decay, a large fraction of the {\beta} decay strength goes to delayed neutron emission populating states in 44 Cl which are also presented. Comparison of experimental observations is made to detailed shell-model calculations using the SDPFSDG-MU interaction to highlight the role of the diminished N = 28 neutron shell gap and the near degeneracy of the proton s 1/2 and d 3/2 orbitals on the structure of the neutron-rich Cl isotopes. The current work also provides further support to a ground state spin-parity assignment of 3/2 + in 45 Cl

    Microsecond Isomer at the N=20 Island of Shape Inversion Observed at FRIB

    Full text link
    Excited-state spectroscopy from the first Facility for Rare Isotope Beams (FRIB) experiment is reported. A 24(2)-μ\mus isomer was observed with the FRIB Decay Station initiator (FDSi) through a cascade of 224- and 401-keV γ\gamma rays in coincidence with 32Na^{32}\textrm{Na} nuclei. This is the only known microsecond isomer (1 μs≤T1/2<1 ms1{\text{ }\mu\text{s}}\leq T_{1/2} < 1\text{ ms}) in the region. This nucleus is at the heart of the N=20N=20 island of shape inversion and is at the crossroads of spherical shell-model, deformed shell-model, and ab initio theories. It can be represented as the coupling of a proton hole and neutron particle to 32Mg^{32}\textrm{Mg}, 32Mg+π−1+ν+1^{32}\textrm{Mg}+\pi^{-1} + \nu^{+1}. This odd-odd coupling and isomer formation provides a sensitive measure of the underlying shape degrees of freedom of 32Mg^{32}\textrm{Mg}, where the onset of spherical-to-deformed shape inversion begins with a low-lying deformed 2+2^+ state at 885 keV and a low-lying shape-coexisting 02+0_2^+ state at 1058 keV. We suggest two possible explanations for the 625-keV isomer in 32^{32}Na: a 6−6^- spherical shape isomer that decays by E2E2 or a 0+0^+ deformed spin isomer that decays by M2M2. The present results and calculations are most consistent with the latter, indicating that the low-lying states are dominated by deformation.Comment: 7 pages, 5 figures, accepted by Physical Review Letter

    Neuropathological and Genetic Correlates of Survival and Dementia Onset in Synucleinopathies: A Retrospective Analysis

    Get PDF
    Background Great heterogeneity exists in survival and the interval between onset of motor symptoms and dementia symptoms across synucleinopathies. We aimed to identify genetic and pathological markers that have the strongest association with these features of clinical heterogeneity in synucleinopathies. Methods In this retrospective study, we examined symptom onset, and genetic and neuropathological data from a cohort of patients with Lewy body disorders with autopsy-confirmed α synucleinopathy (as of Oct 1, 2015) who were previously included in other studies from five academic institutions in five cities in the USA. We used histopathology techniques and markers to assess the burden of tau neurofibrillary tangles, neuritic plaques, α-synuclein inclusions, and other pathological changes in cortical regions. These samples were graded on an ordinal scale and genotyped for variants associated with synucleinopathies. We assessed the interval from onset of motor symptoms to onset of dementia, and overall survival in groups with varying levels of comorbid Alzheimer\u27s disease pathology according to US National Institute on Aging–Alzheimer\u27s Association neuropathological criteria, and used multivariate regression to control for age at death and sex. Findings On the basis of data from 213 patients who had been followed up to autopsy and met inclusion criteria of Lewy body disorder with autopsy-confirmed α synucleinopathy, we identified 49 (23%) patients with no Alzheimer\u27s disease neuropathology, 56 (26%) with low-level Alzheimer\u27s disease neuropathology, 45 (21%) with intermediate-level Alzheimer\u27s disease neuropathology, and 63 (30%) with high-level Alzheimer\u27s disease neuropathology. As levels of Alzheimer\u27s disease neuropathology increased, cerebral α-synuclein scores were higher, and the interval between onset of motor and dementia symptoms and disease duration was shorter (p \u3c 0·0001 for all comparisons). Multivariate regression showed independent negative associations of cerebral tau neurofibrillary tangles score with the interval between onset of motor and dementia symptoms (β −4·0, 95% CI −5·5 to −2·6; p \u3c 0·0001; R 2 0·22, p \u3c 0·0001) and with survival (–2·0, −3·2 to −0·8; 0·003; 0·15, \u3c 0·0001) in models that included age at death, sex, cerebral neuritic plaque scores, cerebral α-synuclein scores, presence of cerebrovascular disease, MAPT haplotype, and APOE genotype as covariates. Interpretation Alzheimer\u27s disease neuropathology is common in synucleinopathies and confers a worse prognosis for each increasing level of neuropathological change. Cerebral neurofibrillary tangles burden, in addition to α-synuclein pathology and amyloid plaque pathology, are the strongest pathological predictors of a shorter interval between onset of motor and dementia symptoms and survival. Diagnostic criteria based on reliable biomarkers for Alzheimer\u27s disease neuropathology in synucleinopathies should help to identify the most appropriate patients for clinical trials of emerging therapies targeting tau, amyloid-β or α synuclein, and to stratify them by level of Alzheimer\u27s disease neuropathology

    Horizons: nuclear astrophysics in the 2020s and beyond

    Get PDF
    Nuclear astrophysics is a field at the intersection of nuclear physics and astrophysics, which seeks to understand the nuclear engines of astronomical objects and the origin of the chemical elements. This white paper summarizes progress and status of the field, the new open questions that have emerged, and the tremendous scientific opportunities that have opened up with major advances in capabilities across an ever growing number of disciplines and subfields that need to be integrated. We take a holistic view of the field discussing the unique challenges and opportunities in nuclear astrophysics in regards to science, diversity, education, and the interdisciplinarity and breadth of the field. Clearly nuclear astrophysics is a dynamic field with a bright future that is entering a new era of discovery opportunities
    • …
    corecore