106 research outputs found

    Experimental demonstration of quantum state tomography and qubit-qubit interactions for rare-earth-ion based solid state qubits

    Full text link
    We report on the implementation of quantum state tomography for an ensemble of Eu3+^{3+} dopant ions in a \YSO crystal. The tomography was applied to a qubit based on one of the ion's optical transitions. The qubit was manipulated using optical pulses and measurements were made by observing the optical free induction in a phase sensitive manner. Fidelities of >90>90% for the combined preparation and measurement process were achieved. Interactions between the ions due to the change in the ions' permanent electric dipole moment when excited optically were also measured. In light of these results, the ability to do multi-qubit quantum computation using this system is discussed

    Demonstration of conditional quantum phase shift between ions in a solid

    Full text link
    Due to their potential for long coherence times, dopant ions have long been considered promising candidates for scalable solid state quantum computing. However, the demonstration of two qubit operation has proven to be problematic, largely due to the difficulty of addressing closely spaced ions. Here we use optically active ions and optical frequency addressing to demonstrate a conditional phase shift between two qubits

    Coherent spectroscopy of rare-earth-ion doped whispering-gallery mode resonators

    Full text link
    We perform an investigation into the properties of Pr3+:Y2SiO5 whispering gallery mode resonators as a first step towards achieving the strong coupling regime of cavity QED with rare-earth-ion doped crystals. Direct measurement of cavity QED parameters are made using photon echoes, giving good agreement with theoretical predictions. By comparing the ions at the surface of the resonator to those in the center it is determined that the physical process of making the resonator does not negatively affect the properties of the ions. Coupling between the ions and resonator is analyzed through the observation of optical bistability and normal-mode splitting.Comment: 8 pages, 9 figure

    Analytic treatment of CRIB Quantum Memories for Light using Two-level Atoms

    Full text link
    It has recently been discovered that the optical analogue of a gradient echo in an optically thick material could form the basis of a optical memory that is both completely efficient and noise free. Here we present analytical calculation showing this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case.Comment: 10 page

    Photon echo without a free induction decay in a double-Lambda system

    Full text link
    We have characterized a novel photon-echo pulse sequence for a double-Λ\Lambda type energy level system where the input and rephasing transitions are different to the applied π\pi-pulses. We show that despite having imperfect π\pi-pulses (associated with large coherent emission due to free induction decay), the noise added is only 0.019±\pm0.001 relative to the shot noise in the spectral mode of the echo. Using this echo pulse sequence in the `rephased amplified spontaneous emission' (RASE) scheme \cite{Ledingham2010} will allow for generation of entangled photon pairs that are in different frequency, temporal, and potentially spatial modes to any bright driving fields. The coherence and efficiency properties of this sequence were characterized in a Pr:YSO crystal

    Analytic treatment of controlled reversible inhomogeneous broadening quantum memories for light using two-level atoms

    Get PDF
    It has recently been discovered that the optical analog of a gradient echo, in an optically thick material, could form the basis of an optical memory that is both completely efficient and noise-free. Here we present analytical calculations showing that this is the case. There is close analogy between the operation of the memory and an optical system with two beam splitters. We can use this analogy to calculate efficiencies as a function of optical depth for a number of quantum memory schemes based on controlled inhomogeneous broadening. In particular, we show that multiple switching leads to a net 100% retrieval efficiency for the optical gradient echo even in the optically thin case
    corecore