579 research outputs found
Effects of partitioning and extrapolation on the connectivity of potential magnetic fields
Coronal magnetic field may be characterized by how its field lines
interconnect regions of opposing photospheric flux -- its connectivity.
Connectivity can be quantified as the net flux connecting pairs of opposing
regions, once such regions are identified. One existing algorithm will
partition a typical active region into a number of unipolar regions ranging
from a few dozen to a few hundred, depending on algorithmic parameters. This
work explores how the properties of the partitions depend on some algorithmic
parameters, and how connectivity depends on the coarseness of partitioning for
one particular active region magnetogram. We find the number of connections
among them scales with the number of regions even as the number of possible
connections scales with its square.
There are several methods of generating a coronal field, even a potential
field. The field may be computed inside conducting boundaries or over an
infinite half-space. For computation of connectivity, the unipolar regions may
be replaced by point sources or the exact magnetogram may be used as a lower
boundary condition. Our investigation shows that the connectivities from these
various fields differ only slightly -- no more than 15%. The greatest
difference is between fields within conducting walls and those in the
half-space. Their connectivities grow more different as finer partitioning
creates more source regions. This also gives a quantitative means of
establishing how far away conducting boundaries must be placed in order not to
significantly affect the extrapolation. For identical outer boundaries, the use
of point sources instead of the exact magnetogram makes a smaller difference in
connectivity: typically 6% independent of the number of source regions
Deconstructing active region AR10961 using STEREO, HINODE, TRACE and SOHO
Active region 10961 was observed over a five day period (2007 July 2-6) by instrumentation on-board STEREO, Hinode, TRACE and SOHO. As it progressed from Sun centre to the solar limb a comprehensive analysis of the EUV, X-ray and magnetic field data reveals clearly observable changes in the global nature of the region.
Temperature analyses undertaken using STEREO EUVI double filter ratios and XRT single and combined filter ratios demonstrate an overall cooling of the region from between 1.6 - 3.0 MK to 1.0 - 2.0 MK over the five days. Similarly, Hinode EIS density measurements show a corresponding increase in density of 27%. Moss, cool (1 MK) outer loop areas and hotter core loop regions were examined and compared with potential magnetic field extrapolations from SOHO MDI magnetogram data. In particular it was found that the potential field model was able to predict the structure of the hotter X-ray loops and that the larger cool loops seen in 171 Angstrom images appeared to follow the separatrix surfaces. The reasons behind the high density moss regions only observed on one side of the active region are examined further
The structure and dynamics of a bright point as seen with Hinode, SoHO and TRACE
Our aim is to determine the plasma properties of a coronal bright point and
compare its magnetic topology extrapolated from magnetogram data with its
appearance in X-ray images. We analyse spectroscopic data obtained with
EIS/Hinode, Ca II H and G-band images from SOT/Hinode, UV images from TRACE,
X-ray images from XRT/Hinode and high-resolution/high-cadence magnetogram data
from MDI/SoHO. The BP comprises several coronal loops as seen in the X-ray
images, while the chromospheric structure consists of tens of small bright
points as seen in Ca II H. An excellent correlation exists between the Ca II
BPs and increases in the magnetic field, implying that the Ca II H passband is
a good indicator for the concentration of magnetic flux. Doppler velocities
between 6 and 15 km/s are derived from the Fe XII and Fe XIII lines for the BP
region, while for Fe XIV and Si VII they are in the range from -15 to +15 km/s.
The coronal electron density is 3.7x10^9 cm^-3. An excellent correlation is
found between the positive magnetic flux and the X-ray light-curves. The
remarkable agreement between the extrapolated magnetic field configuration and
some of the loops composing the BP as seen in the X-ray images suggests that a
large fraction of the magnetic field in the bright point is close to potential.
The close correlation between the positive magnetic flux and the X-ray emission
suggests that energy released by magnetic reconnection is stimulated by flux
emergence or cancellation.Comment: 10 pages with 11 figures. Accepted in Astronomy and Astrophysic
Coronal Loop Expansion Properties Explained Using Separators
One puzzling observed property of coronal loops is that they are of roughly
constant thickness along their length. Various studies have found no consistent
pattern of width variation along the length of loops observed by TRACE and
SOHO. This is at odds with expectations of magnetic flux tube expansion
properties, which suggests that loops are widest at their tops, and
significantly narrower at their footpoints. Coronal loops correspond to areas
of the solar corona which have been preferentially heated by some process, so
this observed property might be connected to the mechanisms that heat the
corona. One means of energy deposition is magnetic reconnection, which occurs
along field lines called separators. These field lines begin and end on
magnetic null points, and loops forming near them can therefore be relatively
wide at their bases. Thus, coronal energization by magnetic reconnection may
replicate the puzzling expansion properties observed in coronal loops. We
present results of a Monte Carlo survey of separator field line expansion
properties, comparing them to the observed properties of coronal loops.Comment: 16 pages, 9 figures, to be submitted to Ap
A Quantitative Model of Energy Release and Heating by Time-dependent, Localized Reconnection in a Flare with a Thermal Loop-top X-ray Source
We present a quantitative model of the magnetic energy stored and then
released through magnetic reconnection for a flare on 26 Feb 2004. This flare,
well observed by RHESSI and TRACE, shows evidence of non-thermal electrons only
for a brief, early phase. Throughout the main period of energy release there is
a super-hot (T>30 MK) plasma emitting thermal bremsstrahlung atop the flare
loops. Our model describes the heating and compression of such a source by
localized, transient magnetic reconnection. It is a three-dimensional
generalization of the Petschek model whereby Alfven-speed retraction following
reconnection drives supersonic inflows parallel to the field lines, which form
shocks heating, compressing, and confining a loop-top plasma plug. The
confining inflows provide longer life than a freely-expanding or
conductively-cooling plasma of similar size and temperature. Superposition of
successive transient episodes of localized reconnection across a current sheet
produces an apparently persistent, localized source of high-temperature
emission. The temperature of the source decreases smoothly on a time scale
consistent with observations, far longer than the cooling time of a single
plug. Built from a disordered collection of small plugs, the source need not
have the coherent jet-like structure predicted by steady-state reconnection
models. This new model predicts temperatures and emission measure consistent
with the observations of 26 Feb 2004. Furthermore, the total energy released by
the flare is found to be roughly consistent with that predicted by the model.
Only a small fraction of the energy released appears in the super-hot source at
any one time, but roughly a quarter of the flare energy is thermalized by the
reconnection shocks over the course of the flare. All energy is presumed to
ultimately appear in the lower-temperature T<20 MK, post-flare loops
Locating current sheets in the solar corona
Current sheets are essential for energy dissipation in the solar corona, in
particular by enabling magnetic reconnection. Unfortunately, sufficiently thin
current sheets cannot be resolved observationally and the theory of their
formation is an unresolved issue as well. We consider two predictors of coronal
current concentrations, both based on geometrical or even topological
properties of a force free coronal magnetic field. First, there are
separatrices related to magnetic nulls. Through separatrices the magnetic
connectivity changes discontinuously. Coronal magnetic nulls are, however, very
rare. At second, inspired by the concept of generalized magnetic reconnection
without nulls, quasi-separatrix layers (QSL) were suggested. Through QSL the
magnetic connectivity changes continuously, though strongly. The strength of
the connectivity change can be quantified by measuring the squashing of the
flux tubes which connect the magnetically conjugated photospheres.
We verify the QSL and separatrix concepts by comparing the sites of magnetic
nulls and enhanced squashing with the location of current concentrations in the
corona. Due to the known difficulties of their direct observation we simulated
the coronal current sheets by numerically calculating the response of the
corona to energy input from the photosphere heating a simultaneously observed
EUV Bright Point. We did not find coronal current sheets not at the
separatrices but at several QSL locations. The reason is that although the
geometrical properties of force free extrapolated magnetic fields can indeed,
hint at possible current concentrations, a necessary condition for current
sheet formation is the local energy input into the corona
Consequences of spontaneous reconnection at a two-dimensional non-force-free current layer
Magnetic neutral points, where the magnitude of the magnetic field vanishes
locally, are potential locations for energy conversion in the solar corona. The
fact that the magnetic field is identically zero at these points suggests that
for the study of current sheet formation and of any subsequent resistive
dissipation phase, a finite beta plasma should be considered, rather than
neglecting the plasma pressure as has often been the case in the past. The
rapid dissipation of a finite current layer in non-force-free equilibrium is
investigated numerically, after the sudden onset of an anomalous resistivity.
The aim of this study is to determine how the energy is redistributed during
the initial diffusion phase, and what is the nature of the outward transmission
of information and energy. The resistivity rapidly diffuses the current at the
null point. The presence of a plasma pressure allows the vast majority of the
free energy to be transferred into internal energy. Most of the converted
energy is used in direct heating of the surrounding plasma, and only about 3%
is converted into kinetic energy, causing a perturbation in the magnetic field
and the plasma which propagates away from the null at the local fast
magnetoacoustic speed. The propagating pulses show a complex structure due to
the highly non-uniform initial state. It is shown that this perturbation
carries no net current as it propagates away from the null. The fact that,
under the assumptions taken in this paper, most of the magnetic energy released
in the reconnection converts internal energy of the plasma, may be highly
important for the chromospheric and coronal heating problem
The Minimum of Solar Cycle 23: As Deep as It Could Be?
In this work we introduce a new way of binning sunspot group data with the
purpose of better understanding the impact of the solar cycle on sunspot
properties and how this defined the characteristics of the extended minimum of
cycle 23. Our approach assumes that the statistical properties of sunspots are
completely determined by the strength of the underlying large-scale field and
have no additional time dependencies. We use the amplitude of the cycle at any
given moment (something we refer to as activity level) as a proxy for the
strength of this deep-seated magnetic field.
We find that the sunspot size distribution is composed of two populations:
one population of groups and active regions and a second population of pores
and ephemeral regions. When fits are performed at periods of different activity
level, only the statistical properties of the former population, the active
regions, is found to vary.
Finally, we study the relative contribution of each component (small-scale
versus large-scale) to solar magnetism. We find that when hemispheres are
treated separately, almost every one of the past 12 solar minima reaches a
point where the main contribution to magnetism comes from the small-scale
component. However, due to asymmetries in cycle phase, this state is very
rarely reached by both hemispheres at the same time. From this we infer that
even though each hemisphere did reach the magnetic baseline, from a
heliospheric point of view the minimum of cycle 23 was not as deep as it could
have been
High-Lundquist Number Scaling in Three-Dimensional Simulations of Parker's Model of Coronal Heating
Parker's model is one of the most discussed mechanisms for coronal heating
and has generated much debate. We have recently obtained new scaling results in
a two-dimensional (2D) version of this problem suggesting that the heating rate
becomes independent of resistivity in a statistical steady state [Ng and
Bhattacharjee, Astrophys. J., 675, 899 (2008)]. Our numerical work has now been
extended to 3D by means of large-scale numerical simulations. Random
photospheric footpoint motion is applied for a time much longer than the
correlation time of the motion to obtain converged average coronal heating
rates. Simulations are done for different values of the Lundquist number to
determine scaling. In the high-Lundquist number limit, the coronal heating rate
obtained so far is consistent with a trend that is independent of the Lundquist
number, as predicted by previous analysis as well as 2D simulations. In the
same limit the average magnetic energy built up by the random footpoint motion
tends to have a much weaker dependence on the Lundquist number than that in the
2D simulations, due to the formation of strong current layers and subsequent
disruption when the equilibrium becomes unstable. We will present scaling
analysis showing that when the dissipation time is comparable or larger than
the correlation time of the random footpoint motion, the heating rate tends to
become independent of Lundquist number, and that the magnetic energy production
is also reduced significantly.Comment: Accepted for publication in Astrophysical Journa
A comparison of spectral element and finite difference methods using statically refined nonconforming grids for the MHD island coalescence instability problem
A recently developed spectral-element adaptive refinement incompressible
magnetohydrodynamic (MHD) code [Rosenberg, Fournier, Fischer, Pouquet, J. Comp.
Phys. 215, 59-80 (2006)] is applied to simulate the problem of MHD island
coalescence instability (MICI) in two dimensions. MICI is a fundamental MHD
process that can produce sharp current layers and subsequent reconnection and
heating in a high-Lundquist number plasma such as the solar corona [Ng and
Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Due to the formation of thin
current layers, it is highly desirable to use adaptively or statically refined
grids to resolve them, and to maintain accuracy at the same time. The output of
the spectral-element static adaptive refinement simulations are compared with
simulations using a finite difference method on the same refinement grids, and
both methods are compared to pseudo-spectral simulations with uniform grids as
baselines. It is shown that with the statically refined grids roughly scaling
linearly with effective resolution, spectral element runs can maintain accuracy
significantly higher than that of the finite difference runs, in some cases
achieving close to full spectral accuracy.Comment: 19 pages, 17 figures, submitted to Astrophys. J. Supp
- …