11 research outputs found
Recommended from our members
Hyperglycaemia-related occipital lobe seizures.
Recognition of the role of hyperglycaemia in seizures is vital, because they tend to refractory to antiepileptic drugs and respond to insulin therapy and hydration
Recommended from our members
Hyperglycaemia-related occipital lobe seizures.
Recognition of the role of hyperglycaemia in seizures is vital, because they tend to refractory to antiepileptic drugs and respond to insulin therapy and hydration
Recommended from our members
Wearable electrochemical microneedle sensing platform for real-time continuous interstitial fluid monitoring of apomorphine: Toward Parkinson management
Recommended from our members
Gastrointestinal barriers to levodopa transport and absorption in Parkinson's disease
Levodopa is the gold standard for the symptomatic treatment of Parkinson's disease (PD). There are well documented motor and non-motor fluctuations, however, that occur almost inevitably once levodopa is started after a variable period in people with PD. Whilst brain neurodegenerative processes play a part in the pathogenesis of these fluctuations, a range of barriers across the gastrointestinal (GI) tract can alter levodopa pharmacokinetics, ultimately contributing to non-optimal levodopa response and symptoms fluctuations. GI barriers to levodopa transport and absorption include dysphagia, delayed gastric emptying, constipation, Helicobacter pylori infection, small intestinal bacterial overgrowth and gut dysbiosis. In addition, a protein-rich diet and concomitant medication intake can further alter levodopa pharmacokinetics. This can result in unpredictable or sub-optimal levodopa response, 'delayed on' or 'no on' phenomena. In this narrative review, we provided an overview on the plethora of GI obstacles to levodopa transport and absorption in PD and their implications on levodopa pharmacokinetics and development of motor fluctuations. In addition, management strategies to address GI dysfunction in PD are highlighted, including use of non-oral therapies to bypass the GI tract
Association of Orthostatic Hypotension With Cerebral Atrophy in Patients With Lewy Body Disorders
OBJECTIVE: To evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB). METHODS: Supine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales. RESULTS: A total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72). CONCLUSIONS: OH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH
Association of Orthostatic Hypotension With Cerebral Atrophy in Patients With Lewy Body Disorders
ObjectiveTo evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB).MethodsSupine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales.ResultsA total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72).ConclusionsOH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH
Recommended from our members
Association of Orthostatic Hypotension With Cerebral Atrophy in Patients With Lewy Body Disorders.
ObjectiveTo evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB).MethodsSupine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales.ResultsA total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72).ConclusionsOH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH
Recommended from our members
Association of Orthostatic Hypotension With Cerebral Atrophy in Patients With Lewy Body Disorders.
ObjectiveTo evaluate whether orthostatic hypotension (OH) or supine hypertension (SH) is associated with brain atrophy and white matter hyperintensities (WMH), we analyzed clinical and radiologic data from a large multicenter consortium of patients with Parkinson disease (PD) and dementia with Lewy bodies (DLB).MethodsSupine and orthostatic blood pressure (BP) and structural MRI data were extracted from patients with PD and DLB evaluated at 8 tertiary-referral centers in the United States, Canada, Italy, and Japan. OH was defined as a systolic/diastolic BP fall ≥20/10 mm Hg within 3 minutes of standing from the supine position (severe ≥30/15 mm Hg) and SH as a BP ≥140/90 mm Hg with normal sitting BP. Diagnosis-, age-, sex-, and disease duration-adjusted differences in global and regional cerebral atrophy and WMH were appraised with validated semiquantitative rating scales.ResultsA total of 384 patients (310 with PD, 74 with DLB) met eligibility criteria, of whom 44.3% (n = 170) had OH, including 24.7% (n = 42) with severe OH and 41.7% (n = 71) with SH. OH was associated with global brain atrophy (p = 0.004) and regional atrophy involving the anterior-temporal (p = 0.001) and mediotemporal (p = 0.001) regions, greater in severe vs nonsevere OH (p = 0.001). The WMH burden was similar in those with and without OH (p = 0.49). SH was not associated with brain atrophy (p = 0.59) or WMH (p = 0.72).ConclusionsOH, but not SH, was associated with cerebral atrophy in Lewy body disorders, with prominent temporal region involvement. Neither OH nor SH was associated with WMH