75 research outputs found
VLT, GROND and Danish telescope observations of transits in the TRAPPIST-1 system
Funding: UGJ acknowledges funding from the Novo Nordisk Foundation Interdisciplinary Synergy Programme grant no. NNF19OC0057374 and from the European Union H2020-MSCA-ITN-2019 under Grant no. 860470 (CHAMELEON). NP’s work was supported by Fundação para a Ciência e a Tecnologia (FCT) through the research grants UIDB/04434/2020 and UIDP/04434/2020. PLP was partly funded by Programa de Iniciación en Investigación-Universidad de Antofagasta, INI-17-03.TRAPPIST-1 is an ultra-cool dwarf that hosts seven known transiting planets. We present photometry of the system obtained using three telescopes at ESO La Silla (the Danish 1.54-m telescope and the 2.2-m MPI telescope) and Paranal (Unit Telescope 1 of the Very Large Telescope). We obtained 18 light curves from the Danish telescope, eight from the 2.2-m and four from the VLT. From these we measure 25 times of mid-transit for four of the planets (b, c, f, g). These light curves and times of mid-transit will be useful in determining the masses and radii of the planets, which show variations in their transit times due to gravitational interactions.PostprintPeer reviewe
Recommended from our members
Gaia21blx: complete resolution of a binary microlensing event in the Galactic disk
Context. Gravitational microlensing is a method that is used to discover planet-hosting systems at distances of several kiloparsec in the Galactic disk and bulge. We present the analysis of a microlensing event reported by the Gaia photometric alert team that might have a bright lens. Aims. In order to infer the mass and distance to the lensing system, the parallax measurement at the position of Gaia21blx was used. In this particular case, the source and the lens have comparable magnitudes and we cannot attribute the parallax measured by Gaia to the lens or source alone. Methods. Since the blending flux is important, we assumed that the Gaia parallax is the flux-weighted average of the parallaxes of the lens and source. Combining this assumption with the information from the microlensing models and the finite source effects we were able to resolve all degeneracies and thus obtained the mass, distance, luminosities and projected kinematics of the binary lens and the source. Results. According to the best model, the lens is a binary system at 2.18 ± 0.07 kpc from Earth. It is composed of a G star with 0.95 ± 0.17 M ⊙ and a K star with 0.53 ± 0.07 M ⊙. The source is likely to be an F subgiant star at 2.38 ± 1.71 kpc with a mass of 1.10 ± 0.18 M ⊙. Both lenses and the source follow the kinematics of the thin-disk population. We also discuss alternative models, that are disfavored by the data or by prior expectations, however.</p
Digging deeper into the dense galactic globular cluster Terzan 5 with electron-multiplying CCDs : variable star detection and new discoveries
Funding: Support for this project is provided by ANID’s Millennium Science Initiative through grant ICN12_009, awarded to the Millennium Institute of Astrophysics (MAS), and by ANID’s Basal project FB210003. M.C. acknowledges additional support from FONDECYT Regular grant #1171273. N.P. acknowledge financial support by FCT–Fundação para a Ciência e a Tecnologia through Portuguese national funds and by FEDER through COMPETE2020-Programa Operacional Competitividade e Internacionalização by the grants UIDB/04434/2020 and UIDP/04434/2020.Context. High frame-rate imaging was employed to mitigate the effects of atmospheric turbulence (seeing) in observations of globular cluster Terzan 5. Aims. High-precision time-series photometry has been obtained with the highest angular resolution so far taken in the crowded central region of Terzan 5, with ground-based telescopes, and ways to avoid saturation of the brightest stars in the field observed. Methods. The Electron-Multiplying Charge Coupled Device (EMCCD) camera installed at the Danish 1.54-m telescope at the ESO La Silla Observatory was employed to produce thousands of short-exposure time images (ten images per second) that were stacked to produce the normal-exposure-time images (minutes). We employed difference image analysis in the stacked images to produce high-precision photometry using the DanDIA pipeline. Results. Light curves of 1670 stars with 242 epochs were analyzed in the crowded central region of Terzan 5 to statistically detect variable stars in the field observed. We present a possible visual counterpart outburst at the position of the pulsar J1748-2446N, and the visual counterpart light curve of the low-mass X-ray binary CX 3. Additionally, we present the discovery of 4 semiregular variables. We also present updated ephemerides and properties of the only RR Lyrae star previously known in the field covered by our observations in Terzan 5. Finally, we report a significant displacement of two sources by ~0.62 and 0.59 arcseconds with respect to their positions in previous images available in the literature.Peer reviewe
The Unseen Population of F to K-type Companions to Hot Subdwarf Stars
We present a method to select hot subdwarf stars with A to M-type companions
using photometric selection criteria. We cover a wide range in wavelength by
combining GALEX ultraviolet data, optical photometry from the SDSS and the
Carlsberg Meridian telescope, near-infrared data from 2MASS and UKIDSS. We
construct two complimentary samples, one by matching GALEX, CMC and 2MASS, as
well as a smaller, but deeper, sample using GALEX, SDSS and UKIDSS. In both
cases, a large number of composite subdwarf plus main-sequence star candidates
were found. We fit their spectral energy distributions with a composite model
in order to estimate the subdwarf and companion star effective temperatures
along with the distance to each system. The distribution of subdwarf effective
temperature was found to primarily lie in the 20,000 - 30,000 K regime, but we
also find cooler subdwarf candidates, making up ~5-10 per cent. The most
prevalent companion spectral types were seen to be main-sequence stars between
F0 and K0, while subdwarfs with M-type companions appear much rarer. This is
clear observational confirmation that a very efficient first stable Roche-lobe
overflow channel appears to produce a large number of subdwarfs with F to
K-type companions. Our samples thus support the importance of binary evolution
for subdwarf formation.Comment: 30 pages, 10 figures, 11 tables. Accepted for publication in MNRA
Star-spot activity, orbital obliquity, transmission spectrum, physical properties, and TTVs of the HATS-2 planetary system
Our aim in this paper is to refine the orbital and physical parameters of the
HATS-2 planetary system and study transit timing variations and atmospheric
composition thanks to transit observations that span more than ten years and
that were collected using different instruments and pass-band filters. We also
investigate the orbital alignment of the system by studying the anomalies in
the transit light curves induced by starspots on the photosphere of the parent
star. We analysed new transit events from both ground-based telescopes and
NASA's TESS mission. Anomalies were detected in most of the light curves and
modelled as starspots occulted by the planet during transit events. We fitted
the clean and symmetric light curves with the JKTEBOP code and those affected
by anomalies with the PRISM+GEMC codes to simultaneously model the photometric
parameters of the transits and the position, size, and contrast of each
starspot. We found consistency between the values we found for the physical and
orbital parameters and those from the discovery paper and ATLAS9 stellar
atmospherical models. We identified different sets of consecutive
starspot-crossing events that temporally occurred in less than five days. Under
the hypothesis that we are dealing with the same starspots, occulted twice by
the planet during two consecutive transits, we estimated the rotational period
of the parent star and, in turn the projected and the true orbital obliquity of
the planet. We find that the system is well aligned. We identified the possible
presence of transit timing variations in the system, which can be caused by
tidal orbital decay, and we derived a low-resolution transmission spectrum.Comment: 23 pages, 21 figures, Accepted for publication in Astronomy &
Astrophysic
OGLE-2017-BLG-0329L: A Microlensing Binary Characterized with Dramatically Enhanced Precision Using Data from Space-based Observations
Mass measurements of gravitational microlenses require one to determine the microlens parallax π E, but precise π E measurement, in many cases, is hampered due to the subtlety of the microlens-parallax signal combined with the difficulty of distinguishing the signal from those induced by other higher-order effects. In this work, we present the analysis of the binary-lens event OGLE-2017-BLG-0329, for which π E is measured with a dramatically improved precision using additional data from space-based Spitzer observations. We find that while the parallax model based on the ground-based data cannot be distinguished from a zero-π E model at the 2σ level, the addition of the Spitzer data enables us to identify two classes of solutions, each composed of a pair of solutions according to the well-known ecliptic degeneracy. It is found that the space-based data reduce the measurement uncertainties of the north and east components of the microlens-parallax vector π E by factors ~18 and ~4, respectively. With the measured microlens parallax combined with the angular Einstein radius measured from the resolved caustic crossings, we find that the lens is composed of a binary with component masses of either (M1, M2) ~ (1.1, 0.8) M⊙ or ~(0.4, 0.3) M⊙ according to the two solution classes. The first solution is significantly favored but the second cannot be securely ruled out based on the microlensing data alone. However, the degeneracy can be resolved from adaptive optics observations taken ~10 years after the event
Transit timing variations in the WASP-4 planetary system*
Abstract Transits in the planetary system WASP-4 were recently found to occur 80 s earlier than expected in observations from the TESS satellite. We present 22 new times of mid-transit that confirm the existence of transit timing variations, and are well fitted by a quadratic ephemeris with period decay dP/dt = −9.2 ± 1.1 ms yr−1. We rule out instrumental issues, stellar activity and the Applegate mechanism as possible causes. The light-time effect is also not favoured due to the non-detection of changes in the systemic velocity. Orbital decay and apsidal precession are plausible but unproven. WASP-4 b is only the third hot Jupiter known to show transit timing variations to high confidence. We discuss a variety of observations of this and other planetary systems that would be useful in improving our understanding of WASP-4 in particular and orbital decay in general
Large-scale changes of the cloud coverage in the ε Indi Ba,Bb system
We present the results of 14 nights of I-band photometric monitoring of the nearby brown dwarf binary, ε Indi Ba,Bb. Observations were acquired over 2 months, and total close to 42 hours of coverage at a typically high cadence of 1.4 minutes. At a separation of just 0.7″, we do not resolve the individual components, and so effectively treat the binary as if it were a single object. However, ε Indi Ba (spectral type T1) is the brightest known T-type brown dwarf, and is expected to dominate the photometric signal. We typically find no strong variability associated with the target during each individual night of observing, but see significant changes in mean brightness - by as much as 0.10 magnitudes - over the 2 months of the campaign. This strong variation is apparent on a timescale of at least 2 days. We detect no clear periodic signature, which suggests we may be observing the T1 brown dwarf almost pole-on, and the days-long variability in mean brightness is caused by changes in the large-scale structure of the cloud coverage. Dynamic clouds will very likely produce lightning, and complementary high cadence V-band and Hα images were acquired to search for the emission signatures associated with stochastic ‘strikes’. We report no positive detections for the target in either of these passbands
- …